Site Sponsors
  • Park Systems - Manufacturer of a complete range of AFM solutions
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Strem Chemicals - Nanomaterials for R&D

Spray-On Solar-Power Cells Are A True Breakthrough

Not only are panels expensive to install, they capture only the visible portion of the sun's rays so they work only on sunny days. Ted's focus is the infrared portion of the sun's rays which accounts for more than half of all solar energy. What's more, infrared energy is available to us even in cloudy weather.

A quantum dot is a semiconductor nanostructure that confines the motion of conduction band electrons, valence band holes, or excitons (bound pairs of conduction band electrons and valence band holes) in all three spatial directions. The confinement can be due to electrostatic potentials (generated by external electrodes, doping, strain, impurities), the presence of an interface between different semiconductor materials (e.g. in core-shell nanocrystal systems), the presence of the semiconductor surface (e.g. semiconductor nanocrystal), or a combination of these. A quantum dot has a discrete quantized energy spectrum. The corresponding wave functions are spatially localized within the quantum dot, but extend over many periods of the crystal lattice. A quantum dot contains a small finite number (of the order of 1-100) of conduction band electrons, valence band holes, or excitons, i.e., a finite number of elementary electric charges.

Run time 3.05 mins

Tell Us What You Think

Do you have a review, update or anything you would like to add to this video content?

Leave your feedback
Submit
Nanotechnology Videos by Subject Matter