Site Sponsors
  • Strem Chemicals - Nanomaterials for R&D
  • Technical Sales Solutions - 5% off any SEM, TEM, FIB or Dual Beam
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Park Systems - Manufacturer of a complete range of AFM solutions
Posted in | Nanoanalysis | Nanobusiness

PI Extends E-616 Multi-Channel Controller Line for Piezo Based Steering and Stabilization Mirror Platforms

Published on August 27, 2009 at 10:48 AM

Piezo system specialist PI has extended its E-616 multi-channel controller line for piezo based steering + stabilization mirror platforms. Four open and closed-loop models are now available in bench-top and OEM module versions. The closed-loop units contain two servo controllers, sensor circuit channels and 3 power amplifiers.

Features and Advantages of the E-616 Multi-Axis Controller

  • Three Integrated Amplifiers Provide up to 10 W Peak Power
  • Closed-Loop and Open-Loop Versions
  • Bench-Top and OEM Modules
  • Internal Coordinate Transformation Simplifies Control of Parallel Kinematics Designs (Tripod & Differential Drive)

Piezo Steering Mirrors: Why?

Piezo steering mirrors are faster than galvo mirror scanners and provide improved resolution and stability due to their high-stiffness, solid-state piezo drives. They are used to steer or stabilize beams or enhance image resolution. Applications range from optical commumication, astronomy and super-resolution microscopy to nano-lithography.

Datasheets & More Information: http://www.physikinstrumente.com/en/news/fullnews.php?newsid=160

Tripod and Quadra-Pod Differential Drive Versions

The controllers can drive parallel-kinematics (highest performance mechanics, where all piezo actuators are connected to the same moving platform) steering mirror designs. With the tripod design (for S-325 Z/Tip/Tilt mirrors), the platform is driven by three piezo actuators at 120° spacing. The quadra-pod differential drive design (as used in the S-330, or S-334 mirror models) runs two orthogonal axes with a fixed pivot point based on two pairs of actuators operating in push / pull-mode. The differential evaluation of two sensors per axis improves linearity, stability and resolution.

Internal Coordinate Transformation Simplifies Control

Parallel-kinematics requires the transformation of the commanded tilt angles into the corresponding linear motion of the individual actuators. In the E-616, this is taken care of by an integrated circuit, eliminating the need of additional external hardware or software. Additionally, with the E-616.S0 tripod version, all actuators can be commanded by an offset-voltage simultaneously. As a result, a vertical movement, for example for optical path length tuning, is obtained.

Simple Setup and Operation

To facilitate integration, setup and operation the E-616 features both front and rear panel connections: The 25 pin sub-D piezo & sensor connector is located on the front, along with offset trim pots and LEDs for Power and Overflow. A 32-pin rear connector allows commanding and reading the sensor and amplifier monitor outputs.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit