Site Sponsors
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Save 20% On a Jenway 7315 Spectrophotometer from Bibby Scientific
  • Strem Chemicals - Nanomaterials for R&D
  • Park Systems - Manufacturer of a complete range of AFM solutions

Nanoplas Introduces New 20-mm Dry-Processing Batch System for MEMS Manufacturers

Published on October 27, 2010 at 3:52 AM

Nanoplas, a fast-growing global supplier of HDRF® plasma processing equipment for MEMS, 3D through-silicon vias (TSVs), IC packaging and III-V compounds, today introduced a fully automatic dry-processing batch system for high-volume 200mm production.

The DSB 9000A is based on Nanoplas’s High Density Radical Flux (HDRF) technology and performs, in one tool, key production steps in microelectronic manufacturing, including:

  • Removal of Bosch-process polymers, residues and photoresist from 80-250° C
  • Isotropic etching of organic sacrificial layers, and
  • Pre-wafer bonding activation

“The DSB 9000A, the newest tool in our growing line of plasma processing equipment, outperforms conventional radio-frequency plasma and microwave systems, while greatly reducing the risk of surface damage,” said Gilles Baujon, CEO of Nanoplas. “This flexible, high-throughput, 200mm system offers MEMS manufacturers damage free dry processing, while eliminating costly steps, resulting in lower cost of ownership.”

With 100 percent gas disassociation, the DSB 9000A ICP source produces free-radical concentration levels of up to 1,000 times greater than conventional plasma sources, thus providing enhanced process performance, including higher cleaning performance for high aspect ratio structures. The system’s proprietary technology eliminates the charging effects and UV radiation normally associated with conventional plasma, allowing stiction-free processing and low-temperature operation.

HDRF gives process engineers outstanding flexibility, offering three distinct modes of operation covering a wide range of processes, from ultra-sensitive surface cleaning to removal of non-reactive residues. Typical throughput for photoresist stripping is 60-70 WPH, and greater than 100 WPH, per process module, for post-Bosch cleaning and surface activation.

Source: http://www.nanoplas.eu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit