Site Sponsors
  • Park Systems - Manufacturer of a complete range of AFM solutions
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Strem Chemicals - Nanomaterials for R&D

Demand for Surrey Nanosystems Carbon Nanotube Fabrication Technology

Published on November 13, 2007 at 1:49 PM

Surrey NanoSystems is currently building its third NanoGrowth system for fabricating carbon nanotube structures, and is rapidly commercialising its technology. Two aspects of the company's unique intellectual property are driving market interest: the very high degree of precision and repeatability built into the tool, and the ability to grow materials at low temperatures that are compatible with commercial semiconductor processes. At the MRS Fall Exhibit, Surrey NanoSystems' Chief Scientist Dr Guan Yow Chen will be on hand to discuss and advise on tool configurations for commercial applications and research projects.

"At this early stage in the cycle for applying new carbon nanotube materials commercially, the requirement for a stable platform capable of prototyping and fabricating structures repeatably is critical. Our unique tool design provides this capability, combined with flexibility that allows configurations to be built to serve individual development ideas. The tool's intrinsic modularity allows users to gain automated control over all aspect of nanomaterial synthesis, from catalyst generation to final material processing," says Dr Guan Yow Chen of Surrey NanoSystems.

He continues: "I'm able to discuss the processing techniques and results that the company has gained from our development partnership with the University of Surrey's Advanced Technology Institute, plus a parallel agreement that we now have in place with a major European research laboratory, who are helping us with independent test-bed services for our unique processing recipes."

The company's first tool is NanoGrowth 1000n, which comes with both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability. These two techniques provide great processing versatility for users. Precision fabrication and configuration repeatability principles are at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among many quality-oriented architectural features are an ultra-high purity gas delivery system and flexible closed-loop control systems that allow users to define target tolerances to achieve a high level of repeatability during all phases of the process. Field-proven carbon nanotube fabrication programs are provided with the tool in the form of software templates that may be adapted easily by users for their own applications.

A high degree of hardware modularity further extends the capability of the tool's design, as it facilitates easy expansion and configuration to meet current and future fabrication requirements. Among many options are further processing techniques such as ICP (inductively coupled plasma), dual sputter sources for catalyst deposition - including a module for delivery of vapor-phase catalysts like ferrocene - and modules to add process stages for automated pilot production or high throughput. Included in the latter category are an automated wafer transport load/lock system, integrated etching capability, and a PECVD module for deposition of thin-film silicon-based materials.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit