Site Sponsors
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Technical Sales Solutions - 5% off any SEM, TEM, FIB or Dual Beam
  • Strem Chemicals - Nanomaterials for R&D
  • Park Systems - Manufacturer of a complete range of AFM solutions

New Software Increases Throughput and Ease-of-Use of Electron Microscopes for Biological Research

Published on August 2, 2010 at 9:32 AM

FEI Company (Nasdaq:FEIC), a leading scientific instrumentation company providing electron microscopy systems for nanoscale applications across many industries, released today a set of software applications that increase the throughput and ease-of-use of its electron microscopes for biological research. The four software packages make electron microscopes more useful for life science researchers involved in structural, cellular and tissue biology as they build the full solution from sample to biological answer.

"Electron microscopy has already played, and will continue to play, a key role in the signature scientific discoveries of this century, for instance, in helping to identify the structure-function relationships in biological systems that could lead to improved diagnostics and more effective drugs," said Dominique Hubert, FEI's vice president and general manager of the Life Sciences Division. "FEI is committed to providing life scientists with the tools they need to explore this new territory."

Hubert adds, "In particular, we are very excited to announce a correlative workflow utility that helps to bridge the gap between light microscopy and electron microscopy. Now researchers can use a routine light microscope to locate a feature of interest, and then transfer the sample to an electron microscope, which can be used to easily navigate to the feature and view the cellular ultrastructure. Correlative platforms such as this could actually speed the process from research to discovery."

The new software offerings include:

Correlative Navigation Utility for the correlation of navigational coordinate systems between different types of microscopes, such as optical and electron microscopes. Investigators can leverage the strengths of each platform, for example, in using the resolving power of electron microscopy to image structures localized by fluorescent tags in a light microscope.

EPU is an automated data collection procedure that facilitates the acquisition of large data sets (from thousands or tens of thousands of nominally identical particles) used to reconstruct high resolution 3D models with the single particle analysis technique.

ARGOS (Automated Recognition of Geometries, Objects, and Segmentations) is a 3D template fitting capability that helps to localize macromolecules in their native cellular context and relate orientation properties of these molecules to their environment. It combines high resolution molecular structure information that was determined by single particle analysis with 3D cellular context from tomography.

Extended Slice & View is a 3D reconstruction technique that combines automated serial cross sectional SEM image acquisition into a virtual 3D volume image of the tissue or cell. The images may be stitched together from multiple images of the section surface to retain nanometer scale detail over many micrometer fields of view. The focused ion beam (FIB) cross sections can be as thin as a few nanometers, providing near isotropic resolution in the X, Y and Z dimensions. The technique has the potential to model whole cells and tissues with sufficient resolution to differentiate lipid bilayers.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit