Posted in | News | Nanomaterials

Computing Application to Better Study Nanoscale Properties in Superconductors

Superconducting materials, which transmit power resistance-free, are found to perform optimally when high- and low-charge density varies on the nanoscale level, according to research performed at the Department of Energy's Oak Ridge National Laboratory.

In research toward better understanding the dynamics behind high-temperature superconductivity, the ORNL scientists rewrote computational code for the numerical Hubbard model that previously assumed copper-compound superconducting materials known as cuprates to be homogenous — the same electron density — from atom to atom.

Researchers have found that atom clusters with inhomogenous stripes of lower density (shown in red) raise critical temperature needed to reach superconductor state.

Lead author Thomas Maier and colleagues Gonzalo Alvarez, Michael Summers and Thomas Schulthess received the Association for Computing Machinery Gordon Bell Prize two years ago for their high-performance computing application. The application has now been used to examine the nanoscale inhomogeneities in superconductors that had long been noticed but left unexplained.

The paper is published in Physical Review Letters.

"Cuprates and other chemical compounds used as superconductors require very cold temperatures, nearing absolute zero, to transition from a phase of resistance to no resistance," said Jack Wells, director of the Office of Institutional Planning and a former Computational Materials Sciences group leader.

Liquid nitrogen is used to cool superconductors into phase transition. The colder the conductive material has to get to reach the resistance-free superconductor phase, the less efficient and more costly are superconductor power infrastructures. Such infrastructures include those used on magnetic levitation trains, hospital Magnetic Resonance Imaging, particle accelerators and some city power utilities.

In angle-resolved photoemission experiments and transport studies on a cuprate material that exhibits striped electronic inhomogeneity, scientists for years observed that superconductivity is heavily affected by the nanoscale features and in some respect even optimized.

"The goal following the Gordon Bell Prize was to take that supercomputing application and learn whether these inhomogenous stripes increased or decreased the temperature required to reach transition," Wells said. "By discovering that striping leads to a strong increase in critical temperature, we can now ask the question: is there an optimal inhomogeneity?"

In an ideal world, a material could become superconductive at an easily achieved and maintained low temperature, eliminating much of the accompanying cost of the cooling infrastructure.

"The next step in our progress is a hard problem," Wells said. "But from our lab's point of view, all of the major tools suited for studying this phenomenon — the computational codes we've written, the neutron scattering experiments that allow us to examine nanoscale properties — are available to us here."

Source: http://www.ornl.gov/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Oak Ridge National Laboratory. (2019, February 13). Computing Application to Better Study Nanoscale Properties in Superconductors. AZoNano. Retrieved on April 18, 2024 from https://www.azonano.com/news.aspx?newsID=18967.

  • MLA

    Oak Ridge National Laboratory. "Computing Application to Better Study Nanoscale Properties in Superconductors". AZoNano. 18 April 2024. <https://www.azonano.com/news.aspx?newsID=18967>.

  • Chicago

    Oak Ridge National Laboratory. "Computing Application to Better Study Nanoscale Properties in Superconductors". AZoNano. https://www.azonano.com/news.aspx?newsID=18967. (accessed April 18, 2024).

  • Harvard

    Oak Ridge National Laboratory. 2019. Computing Application to Better Study Nanoscale Properties in Superconductors. AZoNano, viewed 18 April 2024, https://www.azonano.com/news.aspx?newsID=18967.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.