Posted in | News | Nanoanalysis | Nanofluidics

New Microfluidic Platform Helps Understand Cancer Development

A group of bioengineers from the UCLA Henry Samueli School of Engineering and Applied Science has devised a microfluidic platform for the mechanical confinement of cancer cells to investigate the impact of three-dimensional (3-D) microenvironments on mammalian cell division or mitosis events.

Cancer mitosis (credit: UCLA Engineering) Image Credit: (a) In vivo tumors are subjected to spatially and mechanically challenging conditions; (b) Profile view of microfluidic device; and (c) Cell division into five daughter cells

The microfluidic platform enabled for high-resolution, single-cell microscopic studies while the cells divided and grew. Unlike conventionally used culture flasks, this cutting-edge platform allowed the researchers to effectively simulate the in vivo environs of a cancer cell’s space-constrained development in 3-D environments.

What surprised the team during the study was such confinement made single cancer cells to divide abnormally into three or more daughter cells at a rate much higher than normal. Sometimes, a single cell divided into five daughter cells in a single division event, thus resulting in aneuploid daughter cells.

Principal investigator, Dino Di Carlo informed that albeit cancer can form from precise mutations, most malignant cancers have aneuploid cells and the cause for this is not yet clear. The novel microfluidic platform is a highly reliable tool for researchers to explore the role of distinctive tumor environment in aneuploidy.

According to the research team, the study of the contributing factors, which cause mismanagement during the chromosome segregation process, will help scientists better understand the development of cancer. The study results have been reported in the peer-reviewed PLoS ONE journal.

The UCLA Henry Samueli School of Engineering and Applied Science funded the study. At present, the research team is planning to team up with cancer researchers to conduct more research on the role of confined environments on the progression of cancer.

Source: http://www.ucla.edu/

Will Soutter

Written by

Will Soutter

Will has a B.Sc. in Chemistry from the University of Durham, and a M.Sc. in Green Chemistry from the University of York. Naturally, Will is our resident Chemistry expert but, a love of science and the internet makes Will the all-rounder of the team. In his spare time Will likes to play the drums, cook and brew cider.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of California, Los Angeles. (2019, February 12). New Microfluidic Platform Helps Understand Cancer Development. AZoNano. Retrieved on April 18, 2024 from https://www.azonano.com/news.aspx?newsID=25185.

  • MLA

    University of California, Los Angeles. "New Microfluidic Platform Helps Understand Cancer Development". AZoNano. 18 April 2024. <https://www.azonano.com/news.aspx?newsID=25185>.

  • Chicago

    University of California, Los Angeles. "New Microfluidic Platform Helps Understand Cancer Development". AZoNano. https://www.azonano.com/news.aspx?newsID=25185. (accessed April 18, 2024).

  • Harvard

    University of California, Los Angeles. 2019. New Microfluidic Platform Helps Understand Cancer Development. AZoNano, viewed 18 April 2024, https://www.azonano.com/news.aspx?newsID=25185.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.