Amontons' Laws of Friction Cannot Fully Describe Frictional Characteristics of Nanotextured Surfaces

The frictional characteristics of nanotextured surfaces cannot be fully described by the framework of Amontons' laws of friction, according to new research from the University of Bristol, published in ACS Nano.

Image of diagram showing frictional characteristics of nanotextured surfaces

Nanostructured surfaces are increasingly used in modern miniaturised devices, where nanosized surface features with well-defined geometry and dimensions are incorporated for tailored functionality and properties. It is thus crucially important to understand frictional properties of such nanostructured surfaces.

In order to assess friction data obtained on nanostructured surfaces, scientists have hitherto resorted to the laws of friction described by French physicist Guillaume Amontons in 1699 – particularly the concept of friction coefficient (that is, the ratio between friction and applied load) devised for interpreting the phenomenological macroscopic frictional behaviour of rubbing surfaces.

From violin playing to earthquakes, stick-slip frictional behaviours are widespread in macroscopic phenomena. Using a nanosized AFM (atomic force microscope) tip to scan across a nanodomed surface, the Bristol researchers revealed sustained stick-slip frictional instabilities under all the velocity and load regimes studied. A linear dependence between the amplitude sf of these frictional oscillations and the applied load was found, leading to the definition of the slope as the stick-slip amplitude coefficient (SSAC).

The scientists thus propose that the frictional characteristics of nanotextured surfaces cannot be fully described by the framework of Amontons' laws of friction, and that additional parameters (for examples sf and SSAC) are required when their friction, lubrication and wear properties are important considerations in related nanodevices.

The research, partly supported by a University of Bristol Building Global Engagements in Research (BGER) grant, was carried out by PhD students Benoit Quignon and Georgia Pilkington in Dr Wuge Briscoe’s group, in collaboration with Professor Mike Ashfold and Dr Sean Davis in Bristol's School of Chemistry and colleagues at the University of Bath and the Royal Institute of Technology (KTH) in Stockholm.

Source: http://www.bristol.ac.uk/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.