Posted in | News | Nanomaterials

Applied Nanotech Tests Ballistic, Blast-Resistant Armor Panels with Printed Electronic Antennas

Applied Nanotech, Inc. (ANI), a PEN Inc. company(PEN), announces successful completion and test of fiberglass ballistic and blast-resistant armor panels that incorporate printed electronic antennas capable of sending and receiving radio communications and jamming enemy communication signals. The armor provides multi-channel communications and advanced active protection for vehicles, ships and buildings.

The multi-function armor eliminates the need for multiple high-profile communications antenna structures on military vehicles and ships, making them less visible and identifiable in hostile situations. The armor-incased antennas also have jamming capability to block radio signals, such as those used to remotely trigger explosives, including improvised explosive devices (IEDs).

Two wideband low-profile antennas have been developed, each capable of carrying signals at multiple frequencies. Together they provide electronic warfare, jamming and communication capabilities. ANI partners in the program are Armortex, maker of bullet-, blast- and forced entry-resistant products, The University of Tennessee at Knoxville and Villanova University. The research, supported by a federal Small Business Technology Transfers program (STTR) sponsored by the Office of Naval Research (ONR), combines the knowledge and experience of printed electronics of ANI with the antenna design and modeling capabilities of UT Knoxville and Villanova, and bullet-resistant fiberglass panel products manufactured by Armortex.

"Applied Nanotech and the university partners have made impressive technology strides to create new applications for our existing product line," says Rick Snelling, Vice President/General Manager of Armortex.

"The applications of printed electronics are vast; ANI offers the knowledge and experience to help realize the potential," says Dr. Richard Fink, President, Applied Nanotech. "This success demonstrates our comprehensive capabilities as the PEN design center."

"This has been a challenging yet exciting program to take a passive composite material and create a complex antenna structure that not only provides ballistic protection but also may help defeat improvised explosive devices and other threats," says Dr. Aly Fathy, Professor, Department of Electrical and Computer Engineering at UT Knoxville. "This program is a synergistic combination of functional requirements, materials, novel design, modeling and testing," says Dr. Ahmad Hoorfar, Professor and Director of Antenna Research Laboratory, Department of Electrical and Computer Engineering, Villanova University.

Source: http://appliednanotech.net/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.