Posted in | News | Nanomaterials

Coral-Like Nanoplates Help Remove Toxic Heavy Metals from Water

A new material that mimics coral could help remove toxic heavy metals like mercury from the ocean, according to a new study published in the Journal of Colloid and Interface Science.

This is a graphical abstract of synthetic coral. Credit: Images provided by the researchers of the study, Copyright @ Elsevier

The researchers, from Anhui Jianzhu University in China, say their new material could provide inspiration for other approaches to removing pollutants.

Toxic heavy metal ions like mercury, lead and arsenic are released into the water through human activity, including manufacturing and industrial processes. One major source of toxic metal contamination is the ocean. When mercury pollutes the water, plants and animals absorb it. The mercury builds up in the food chain, ultimately resulting in toxic fish. According to the WHO, between 1.5 and 17 in every thousand children living in selected subsistence fishing populations showed cognitive impacts caused by the consumption of fish containing mercury.

Heavy metals are also toxic to corals: even at low concentrations, small amounts of heavy metal pollution can kill corals. This heightened toxicity is due to coral being very efficient at collecting, or adsorbing, heavy metals. The researchers behind the new study have taken inspiration from this and developed a device that mimics the way coral adsorbs heavy metals.

Dr. Xianbiao Wang and colleagues have made coral-like nanoplates using aluminium oxide, with the aim of adsorbing mercury from water. Aluminium oxide has previously been used to remove pollutants, but the structure of the material has not been optimal, so they have not performed very well. The new nanoplates curl themselves up into a coral-like structure, which behaves in a similar way to real coral, making the material more effective.

"Adsorption is an easy way to remove pollutants from water, so developing new products that can do this is a big challenge in environmental remediation," said Dr. Xianbiao Wang, one of the authors of the study from Anhui Jianzhu University in China. "The chemical and physical structure of such products is very important, it is interesting to design and fabricate adsorbents with different structures to see how they behave. In particular, materials that mimic biological adsorbents like coral have potentially huge applications."

The researchers tested the coral-like nanoplates on removing mercury from water. They found that the coral-like structure removed around 2.5 times more mercury from water than the traditional aluminium oxide nanoparticles.

"We are very excited about the results, which provide a good example for the production of coral-like adsorbents," said Dr. Wang. "We hope our work provides inspiration for more research into the development of materials that mimic biological organisms."

Source: http://www.elsevier.com

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.