Posted in | News | Nanofabrication

POSTECH Researchers Develop Novel Fabrication Technology for High Density and Scalable Memristor Array

Along with the fast development of modern information technology, charge-based memories, such as DRAM and flash memory, are being aggressively scaled down to meet the current trend of small size devices.

A memory device with high density, faster speed, and low power consumption is desired to satisfy Moore’s law in the next few decades. Among the candidates of next-generation memory devices, cross-bar-shaped non-volatile resistive memory (memristor) is one of the most attractive solutions for its non-volatility, faster access speed, ultra-high density and easier fabrication process.

Conventional memristors are usually fabricated through conventional optical, imprint, and e-beam lithographic approaches. However, to meet Moore’s law, the assembly of memristors comprised of 1-dimensional (1D) nanowires must be demonstrated to achieve cell dimensions beyond limit of state-of-art lithographic techniques, thus allowing one to fully exploit the scaling potential of high density memory array.

Prof. Tae-Woo Lee (Dept. of Materials Science and Engineering) and his research team have developed a rapid printing technology for high density and scalable memristor array composed of cross-bar-shaped metal nanowires. The research team, which consists of Prof. Tae-Woo Lee, research professor Wentao Xu, and doctoral student Yeongjun Lee at POSTECH, published their findings in Advanced Materials.

They applied an emerging technique, electrohydrohynamic nanowire printing (e-NW printing), which directly prints highly-aligned nanowire array on a large scale into the fabrication of microminiature memristors, with cross-bar-shaped conductive Cu nanowires jointed with a nanometer-scale CuxO layer. The metal-oxide-metal structure resistive memory device exhibited excellent electrical performance with reproducible resistive switching behavior.

This simple and fast fabrication process avoids conventional vacuum techniques to significantly reduce the industrial-production cost and time. This method paved the way to the future down-scaling of electronic circuits, since 1D conductors represent a logical way to extreme scaling of data processing devices in the single-digit nanometer scale.

They also succeeded in printing memristor array with various shapes, such as parallel lines with adjustable pitch, grids, and waves which can offer a future stretchable memory for integration into textile to serve as a basic building block for smart fabrics and wearable electronics.

“This technology reduces lead time and cost remarkably compared with existing manufacturing methods of cross-bar-shaped nanowire memory and simplifies its method of construction,” said Prof. Lee. “In particular, this technology will be used as a source technology to realize smart fabric, wearable computers, and textile electronic devices.”

This work was supported by the Center for Advanced Soft-Electronics as Global Frontier Project and the Pioneer Research Center Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning.

Source: http://wwwhome.postech.ac.kr/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.