Site Sponsors
  • Strem Chemicals - Nanomaterials for R&D
  • Park Systems - Manufacturer of a complete range of AFM solutions
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Technical Sales Solutions - 5% off any SEM, TEM, FIB or Dual Beam

Nanosight Instrument Used to Study Wear Debris Generated in Orthopaedic Implants

Published on September 9, 2008 at 9:38 PM

NanoSight Limited, the nanoparticle characterization company, is happy to announce that the University of Leeds is committed to the use of their Nanoparticle Tracking Analysis system for the study of wear debris generated in orthopaedic implants.

Dr Joanne Tipper of the Institute of Molecular and Cellular Biology studies nanoparticle sized polymer debris, specifically polyethylene generated first in vitro (to prove its presence) and then in vivo (from tissue from around failed hip replacements). The objective was first to characterize/size the particles and then to consider their bioactivity and effect on cell responses.

Dr Tipper has made measurements on different materials used for implants (metal-metal, ceramic-ceramic and polymer-polymer). She has had good results on model metal and ceramic particle systems. The metal nanoparticle debris are typically in the range of 20-80nm which is particularly suited to NTA when compared to light scattering methods. The NTA results compare extremely well with high resolution FEG-SEM, and these particles compare well with clinically generated wear debris. NTA has proven to be much easier to use, requiring minimal sample preparation time compared to SEM and then providing results in minutes. When studying polymers, NTA produced excellent results for polyethylene particles in the 100-800nm range, again when compared to FEG-SEM.

NanoSight’s chief technical officer and founder, Dr Bob Carr, says this exciting application is typical of why nanoparticle sizing is becoming critical in many processes. “Understanding biocompatibility and nanotoxicology effects have contributed to the demand for our instrumentation where researchers want to increase their knowledge of materials performance on the nanoscale.”

With more than 100 NTA systems in use worldwide, it is clear that researchers are finding this technique highly suited to nanoparticle characterization.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit