Cornell NanoScale Science and Technology Facility Helps Researchers Develop Microscopic, Organic Transistors

To make better mind maps, a group of French scientists – building on prototypes developed at the Cornell NanoScale Science and Technology Facility (CNF) – have produced the world’s first microscopic, organic transistors that can amplify and record signals from within the brain itself.

This micro transistor can now obtain high-quality amplification and brain-signal recording better than ever before. A French scientific team used the Cornell NanoScale Science and Technology Facility to develop the prototypes. (Department of Bioelectronics, Ecole des Mines)

Helping patients and doctors alike, this is a substantial, 10-fold improvement in signal quality compared with current electrode technology.

In epileptic patients, recordings help to scout brain regions responsible for seizure genesis. For patients with brain tumors, recordings help to chart the brain for tumor removal. In addition, electrical recordings of neuronal activity are being used in brain-machine interfaces to help paralyzed people control prosthetic limbs.

High-quality recordings of brain activity – challenging at best – need to be carefully amplified, but today’s amplifiers are bulky and placed outside the skull, where the signal degrades. These new biocompatible, microdevices are flexible enough to go inside the brain and follow the curvilinear shape of the brain surface.

To develop the prototypes, the scientists used the CNF lithography and characterization suite of tools – which validates never-before-used concepts. The staff’s experience converted initial designs into real devices quickly.

“To understand how the brain works, we record the activity of a large number of neurons. Transistors provide higher-quality recordings than electrodes – and, in turn, record more neuronal activity,” said George Malliaras of the Microelectronics Center of Provence, France, and a lead author on the research. “The CNF prototyping allowed us to skip having to reinvent the wheel and saved us precious time and money.”

The study, “In Vivo Recordings of Brain Activity Using Organic Transistors,” was published in Nature Communications, March 2013.The System Neuroscience Institute, Marseille, France, and Microvitae Technologies, Gardanne, France, also contributed to the research. The CNF facility is funded by the National Science Foundation.

Source: http://www.cornell.edu

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cornell University - NanoScale Facility. (2019, February 11). Cornell NanoScale Science and Technology Facility Helps Researchers Develop Microscopic, Organic Transistors. AZoNano. Retrieved on April 23, 2024 from https://www.azonano.com/news.aspx?newsID=27100.

  • MLA

    Cornell University - NanoScale Facility. "Cornell NanoScale Science and Technology Facility Helps Researchers Develop Microscopic, Organic Transistors". AZoNano. 23 April 2024. <https://www.azonano.com/news.aspx?newsID=27100>.

  • Chicago

    Cornell University - NanoScale Facility. "Cornell NanoScale Science and Technology Facility Helps Researchers Develop Microscopic, Organic Transistors". AZoNano. https://www.azonano.com/news.aspx?newsID=27100. (accessed April 23, 2024).

  • Harvard

    Cornell University - NanoScale Facility. 2019. Cornell NanoScale Science and Technology Facility Helps Researchers Develop Microscopic, Organic Transistors. AZoNano, viewed 23 April 2024, https://www.azonano.com/news.aspx?newsID=27100.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.