Ceramic Slips, The Importance of Particle Size Analysis and Zeta Potential

Particle size is the most important parameter in the production of ceramic products. The particle size must be optimized to ensure that the desired physical / mechanical properties are achieved. The majority of ceramic products are manufactured by the process of slip casting in a mould. Maintenance of the desired particle size distribution requires control of the dispersion stability of the ceramic slip.

Ceramic Slips

Slips are suspensions of one or more ceramic in a liquid, usually water, with a particle size of around 1µm and may be considered as a colloidal system. It is vital that there is control over the ability of the particles to remain in suspension so that deposition occurs evenly onto the mould walls.

Colloidal Dispersions and Zeta Potential

In colloidal dispersions, the stability is controlled by the interaction forces between particles. Without repulsion between particles, aggregates will form. Zeta potential is a measure of this interaction.

Conclusion

The production of strong defect free ceramics is obtained by producing a well-dispersed slip of known particle size distribution.

Zeta potential measurements using the Malvern Panalytical Zetasizer assist in developing a good dispersion and indicate the likelihood of aggregation.

  • Enables optimization of process variables such as particle size and pH to improve slip dispersion and control product quality.
  • Determine quantities of additives controlling dispersion.
  • Measure the size of ceramic particles down to 2nm.
  • Zeta potential measurement of virtually any ceramic slip.
  • Measurements are fast and reproducible.

Case History – Monodisperse vs. Conventionally Milled Powders in Ceramic Slips

Since the early 1980’s increasing attention has been paid to the preparation of monodisperse sub-micron oxide powders, with a view to obtaining denser packing and a lower sintering temperature than can be achieved with a milled material.

Table 1 gives a comparison between the lower sintering temperature required using a monodisperse product, compared with a conventionally milled product.

Table 1. Sintering temperature comparison for a monodisperse powder and a conventionally milled product.

Sintering Temp (K)
Oxide Initial Particle size (µm) Final Grain Size (µm) Monodisperse Product Conventionally Milled Product
TiO2 0.3 0.5 1273 1873
ZrO2 0.2 0.3 1273 1973
Al2O3 0.25 0.5 1523 2023

 

 

Recent work by Zhang and Min Fang has shown that successful production of ceramic composite slip castings from sub-micron alumina and zirconia powder is highly dependent on the zeta potential of the powder in suspension. The suspending media was water with and without additions of a dispersing additive - PAA (polyacrylic acid). Zeta potential vs pH plots of the ZrO2and Al2O3were obtained on a Malvern Panalytical Zetasizer.  Although the two materials codisperse well at pH 4-5, where the zeta potential was greater than 50mV, they were not suitable for slip casting because the acid medium seriously etched the plaster mould. In the basic pH region, the plaster mould was etched less by the medium. However, the powders could not be suspended in the basic medium because of the much smaller Al2O3zeta-potential compared to that of ZrO2. However, adding PAA had a dramatic effect on the zeta-potential of the powders.

Zeta potential vs pH plot for alumina and zirconia casting slips.

Figure 1. Zeta potential vs pH plot for alumina and zirconia casting slips.

At pH 10, the zeta-potentials of both powders were about -50mV, consequently, the powders could easily be co-dispersed.

This information has been sourced, reviewed and adapted from materials provided by Malvern Panalytical.

For more information please visit Malvern Panalytical.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Malvern Panalytical. (2023, May 30). Ceramic Slips, The Importance of Particle Size Analysis and Zeta Potential. AZoNano. Retrieved on February 23, 2024 from https://www.azonano.com/article.aspx?ArticleID=1097.

  • MLA

    Malvern Panalytical. "Ceramic Slips, The Importance of Particle Size Analysis and Zeta Potential". AZoNano. 23 February 2024. <https://www.azonano.com/article.aspx?ArticleID=1097>.

  • Chicago

    Malvern Panalytical. "Ceramic Slips, The Importance of Particle Size Analysis and Zeta Potential". AZoNano. https://www.azonano.com/article.aspx?ArticleID=1097. (accessed February 23, 2024).

  • Harvard

    Malvern Panalytical. 2023. Ceramic Slips, The Importance of Particle Size Analysis and Zeta Potential. AZoNano, viewed 23 February 2024, https://www.azonano.com/article.aspx?ArticleID=1097.

Ask A Question

Do you have a question you'd like to ask regarding this article?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.