Metal Nanopowders and Nanoparticles - Production and Applications

Nanostructured metal and alloy powders may be produced either via the reduction or co-reduction of metal salts using alkaline-triorganohydroborates or using the “polyol”- or the “alcohol-reduction” pathways.

Triorganohydroborate Reduction

The triorganohydroborate reduction of e.g. Pt-salts yields Pt nanopowders of ca. 3 – 4nm size with purities of > 95% . The size distribution, however, is relatively broad and the product is contaminated with small residues of alkaline halides.

Polyol Method

Via the Polyol Method (see equation below) relatively large Pt nanopowders (e.g. 5 – 13nm) are obtained in > 99% purity. The reduction is based on the decomposition of the ethylene glycol and its conversion to diacetyl. N.

AZoNano - Nanotechnology - Strem Chemicals - Polyol formation of metal nanopowders

Alcohol Reduction Method

Toshima from the Science University of Tokyo in Yamaguchi has introduced the alcohol reduction method in the field of nanopowder synthesis. Alcohols such as methanol, ethanol or propanol work simultaneously as solvents and as reducing agents, being oxidized to aldehydes or ketones. Refluxing metal salts or complexes (such as H2PtCl6, HAuCl4, PdCl2, RhCl3 in an alcohol/water solution (1/1, v/v) yields nanocrystalline metal powders in the absence of stabilizers.

In the case of Pt, the alcohol reduction of H2PtCl6 gives Pt(0) particles of ≈ 3nm size, however with a broad size distribution, and moderate purity (80 – 90%). It should be mentioned here that in the presence of protective polymers such as polyvinylpyrrolidone (PVP), homogeneous colloidal dispersions, e.g. nanometal Pt colloids of 2.7nm size are obtained.

Applications of Metal Nanopowders

Metal nanopowders are of considerable interest in industrial powder technology, metallurgy, and in catalysis.

Metal Nanoparticles

In contrast to Metal Nanopowders which tend to agglomerate to larger grains and where Electron Microscopy shows large particle sizes with a relatively broad size distribution, “Metal Nanoparticles” generally exhibit small sizes, well defined and regular shapes and have histograms with a narrow size distribution curve (i.e. a good “monodispersity”). In case of Platinum, spherical nanoparticles of 4nm ± 0.5nm size are available from pre-prepared 4nm Pt-NR4Cl Organosols (see below) by removing the colloidal stabilizer (i.e. the NR4Cl) from the particle surface via repeated washing.

Thermolysis of Co2(CO)8

Recently, a novel, size-selective preparation route was found for the manufacture of air stable “monodispersed” colloidal cobalt nanoparticles via the thermolysis of Co2(CO)8 in the presence of aluminum alkyls. X-ray absorption near edge structure measurements have proven that subsequent “smooth air-oxidation” provides long term air-stable zerovalent magnetic cobalt particles of c.a. 10nm ± 0.5nm size (see Fig. 1). A similar procedure leads to zerovalent, air-stable nanoparticles of Ni, Fe, and to Fe/Co alloys.

TEM micrograph of air-stable 10 nm cobalt particles.

Figure 1. TEM micrograph of air-stable 10 nm cobalt particles.

Applications of Metal Nanoparticles

Some interesting applications of these materials may soon develop in metallurgy and special fields of powder technology. In wet form these monodisperse Fe-, Co-, Ni- and Fe/Co alloy particles may be transformed into powerful magnetic fluids (see below).

A complete list of references can be found by referring to the original document.

This information has been sourced, reviewed and adapted from materials provided by Strem Chemicals.

For more information on this source, please visit Strem Chemicals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Strem Chemicals. (2024, July 10). Metal Nanopowders and Nanoparticles - Production and Applications. AZoNano. Retrieved on October 31, 2024 from https://www.azonano.com/article.aspx?ArticleID=1333.

  • MLA

    Strem Chemicals. "Metal Nanopowders and Nanoparticles - Production and Applications". AZoNano. 31 October 2024. <https://www.azonano.com/article.aspx?ArticleID=1333>.

  • Chicago

    Strem Chemicals. "Metal Nanopowders and Nanoparticles - Production and Applications". AZoNano. https://www.azonano.com/article.aspx?ArticleID=1333. (accessed October 31, 2024).

  • Harvard

    Strem Chemicals. 2024. Metal Nanopowders and Nanoparticles - Production and Applications. AZoNano, viewed 31 October 2024, https://www.azonano.com/article.aspx?ArticleID=1333.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.