Site Sponsors
  • Park Systems - Manufacturer of a complete range of AFM solutions
  • Strem Chemicals - Nanomaterials for R&D
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD

Asylum Research Introduce Variable Field Module2 for MFP-3D AFM

Published on November 1, 2011 at 6:40 PM

Asylum Research, the technology leader in scanning probe/atomic force microscopy, introduces the new Variable Field Module2 (VFM2) for the MFP-3D Atomic Force Microscopes (AFM).

Five frames showing a piece of Perpendicular Media Recording (PMR) hard disk degaussed with an in-plane ~0.5 Tesla magnetic field using the VFM2.

The VFM2 is ideal for researchers who want to apply magnetic fields to their atomic force microscopy experiments and applies continuously adjustable magnetic fields parallel to the sample plane approaching one Tesla with one Gauss resolution. The module is useful for magnetic force microscopy (MFM), conductive AFM (C-AFM), and other applications where the sample's properties are magnetic field dependent.

The VFM2 easily attaches to the MFP-3D AFMs and features adjustable pole tips for optimal choice between maximum required field, sample placement and minimum field gradients. The Module uses a unique design incorporating rare earth magnets to produce the magnetic field. Maintaining a steady field produces no heat, thermal drift, or mechanical vibration. Field intensity is software controllable. An integrated Gaussmeter provides a quantitative measure of the applied magnetic field.

For experiments where combined magnetic field and a high tip-sample voltage bias are required, such as for studies of ferroelectric and piezoelectric materials, the VFM2 High Voltage Kit can be easily attached to the VFM2. The High Voltage Kit allows application of tip biases up to ±220V.

Commented Roger Proksch, President of Asylum Research, "Prior to the introduction of the VFM2, high magnetic field measurements required complicated superconducting or water-cooled magnets, neither of which were particularly friendly to low-noise, high precision AFM measurements. Our team, headed by Maarten Rutgers, has made a startling increase in field strength along with increased measurement precision and ease of use. This is truly a major step forward in ambient AFM."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit