Posted in | News | Nanomedicine | Nanomaterials

Submicron Features Patterned on Surfaces of Polymer Biomaterials Can Prevent Blood Clots

Implanting artificial materials or devices in patients can cause adverse reactions when contacting natural tissue and blood. In blood-related defense mechanisms, plasma proteins quickly adsorb on the biomaterial surfaces and trigger a series of biochemical events that lead to platelet adhesion and aggregation into blood clots. The clotting can hinder the performance of an artificial device and can be life-threatening in some instances.

Now, Isabel Rodriguez from the Institute of Materials Research and Engineering of A*STAR, Singapore, and co-workers have discovered that adding miniature topographical features to polymer surfaces can reduce blood coagulation and improve the ‘hemocompatibility’, or blood compatibility, of biomaterials1.

Using chemical modifications, many researchers have tried to coat or graft a secondary material to the surface of biomaterials to enhance their biocompatibility. Attempts to date, however, have met with limited success.

Click here to read the full article.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.