Site Sponsors
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Technical Sales Solutions - 5% off any SEM, TEM, FIB or Dual Beam
  • Strem Chemicals - Nanomaterials for R&D
  • Park Systems - Manufacturer of a complete range of AFM solutions
  • Save 20% On a Jenway 7315 Spectrophotometer from Bibby Scientific

Asylum Research and ORNL Wins Prestigious Microscopy Today Innovation Award

Published on August 13, 2010 at 2:54 AM

Asylum Research, the technology leader in scanning probe and atomic force microscopy, and Oak Ridge National Laboratory (ORNL) have just received the prestigious Microscopy Today Innovation Award for the development of Band Excitation (BE), a new breakthrough scanning probe microscopy (SPM) technology.

Band excitation allows more rapid probing of energy dissipation at the nanoscale than previously possible, enabling scientists to characterize a sample’s electrical, magnetic, and mechanical energy conversion and dissipation properties at standard imaging rates.

Band Excitation captures the full tip dynamics during a scan, and therefore let’s you see the transfer function or ‘cantilever tune’ everywhere. From this information one can see maps of dissipation and non-linearities directly. Shown is a 15X15 micron BE acoustic force microscopy scan of a polymer blend from which the Q-factor has been extracted. A clear contrast can be seen between the different constituent materials. Also shown are the average transfer functions over the regions indicated by blue and red dots on the map. The ability to capture tip motion in greater detail makes nanoscale measurements of material properties possible.

The applicability of SPM for mapping energy transformations and dissipation has previously been limited by the fundamental operation mechanism employed in nearly all conventional SPMs – that is, they operate at only one frequency at a time. However, in order to fully capture the dynamic interactions of the SPM tip and the surface – of which dissipation is a critical component – one must know how this interaction varies at many frequencies. BE achieves this breakthrough in information gathering by exciting and detecting the tip dynamics at many frequencies simultaneously – like seeing in color as opposed to black and white, or listening to a chorus of singers instead of a single note. In BE, the conventional sine wave is substituted by a synthesized digital signal that spans a continuous band of frequencies and monitors the response within the same frequency band. This allows ~100x improvement in data acquisition speed compared to currently available commercial technologies without decreasing the signal to noise ratio. A full response spectrum can then be collected in the amount of time required for obtaining a single pixel in standard SPM. BE will be an important technology in understanding energy dissipation in a diverse range of technologies, including electronics, information technology, energy storage and transport, and more.

“We’re extremely excited to have won this prestigious award,” said Roger Proksch, President of Asylum Research. “Our collaboration with the Oak Ridge National Laboratory has put forth many new cutting-edge developments in the field of SPM, including the Piezo Force Module and Switching Spectroscopy PFM. The Band Excitation method presents a fundamentally new method for data acquisition and processing in SPM. Asylum Research and our collaborators continue to lead the industry with technical innovation as confirmed by this award.”

“We believe Band Excitation will be the harbinger of a new family of SPMs,” said Dr. Sergei Kalinin, co-inventor and researcher at the Center for Nanophase Materials Sciences (CNMS) at ORNL. “This method provides an alternative to well-known lock-in-based detection methods, and can revolutionize this field by providing the potential for quantitative and artifact-free dissipation imaging. We are looking forward to developing new applications for BE through our partnership with Asylum Research.”

"This award acknowledges the important step forward that this technique represents and signals where the field of microscopy can and will go in the future," noted Dr. Stephen Jesse, another co-inventor from the CNMS. "The speed and flexibility of the latest generation of Asylum SPM controllers permit the fine tuning and fast acquisition of data streams needed to take us from mere imaging to an arena of information-rich insight into cantilever-surface interactions and material functionality."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit