Site Sponsors
  • Technical Sales Solutions - 5% off any SEM, TEM, FIB or Dual Beam
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Strem Chemicals - Nanomaterials for R&D
  • Park Systems - Manufacturer of a complete range of AFM solutions

Asylum Research Win MT-10 Award for Electrochemical Strain Microscopy

Published on August 18, 2011 at 6:41 PM

Asylum Research, the technology leader in Scanning Probe and Atomic Force microscopy, and Oak Ridge National Laboratory (ORNL) have just received the prestigious Microscopy Today Innovation (MT-10) Award for the development of Electrochemical Strain Microscopy (ESM).

ESM is an innovative new scanning probe microscopy (SPM) technique implemented on Asylum's Cypher and MFP-3D AFMs that is capable of probing electrochemical reactivity and ionic flows in solids on the sub-ten-nanometer level. ESM is the first technique that measures ionic currents directly, providing a new tool for mapping electrochemical phenomena on the nanoscale. The capability to probe electrochemical processes and ionic transport in solids is invaluable for a broad range of applications for energy generation and storage ranging from batteries to fuel cells.

The Figure displays the correlation between topography and the measured out-of-plane (OP) and in-plane (IP) Electrochemical Strain Microscopy (ESM) amplitude and phase signals. To demonstrate the surface characteristics of this LiCoO2 film, topography and deflection signals are shown in images (a) and (b), respectively. Small grains of LiCoO2 with a diameter of approximately 200-300nm can be identified. The maximum OP and IP ESM amplitudes are displayed in images (c) and (d). Both of the latter images show strong variations in the ESM response across the scanned area. In addition, the OP and IP ESM amplitude maps do not show the same features, demonstrating no or minimal cross-talk between the cantilever deflection and torsion. When images (c) and 7(d) are compared, grains with OP and IP response (#1), no OP but IP response (#2), and OP but no IP response (#3) can be identified.

ESM has the potential to aid in these advances with two major improvements over conventional technologies:

  1. the resolution to probe nanometer-scale volumes and
  2. the inherent ability to decouple ionic from electronic currents with imaging capability extended to a broad range of spectroscopy techniques reminiscent of conventional electrochemical tools.

"We're extremely excited to have won this prestigious award," said Roger Proksch, President of Asylum Research. "Our collaboration with the Oak Ridge National Laboratory has put forth many new cutting-edge developments in the field of SPM, including Piezoresponse Force Microscopy, Switching Spectroscopy PFM, and Band Excitation. Asylum Research and our collaborators continue to lead the industry with technical innovation as confirmed by this award."

Commented Sergei Kalinin, senior research staff member at the ORNL Center for Nanophase Materials Science, "Ionic phenomena in solids directly underpin multiple energy technologies ranging from batteries to fuel cells, as well as emergent electroresistive and memristive memories. Furthermore, very often they can contribute to observed physical phenomena in correlated oxides. Electrochemical Strain Microscopy provides the pathway to study the kinetics and thermodynamics of electrochemical processes in solids on the nanoscale, opening a window in these poorly explored aspects of materials functionality".

Nina Balke added, "This is the first time we can actually see phenomena in batteries well below the100 nanometer level, observing their charging and degradation on the level of single structural defects."

Concluded Stephen Jesse, the mastermind behind the development of ESM, "ESM offers an example of a multidimensional SPM technique that provides a new and decisive step towards understanding the nanoscale world of ionic systems."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit