Nanoparticles Specifically Target Tough Cancer Stem Cells

Many cancer patients survive treatment only to have a recurrence within a few years. Recurrences and tumor spreading are likely due to cancer stem cells that can be tough to kill with conventional cancer drugs.

But now researchers have designed nanoparticles that specifically target these hardy cells to deliver a drug. The nanoparticle treatment, reported in the journal ACS Nano, worked far better than the drug alone in mice.

Anti-cancer drugs can often shrink tumors but don't kill cancer stem cells (CSCs). Although CSCs might only make up a small part of a tumor, their resistance to drugs allows them to persist. They can then cause a tumor to regrow or spread cancerous cells throughout the body. Xiaoming He and colleagues wanted to develop a nanoparticle system to overcome these cells' defenses.

The researchers packaged the anti-cancer drug doxorubicin into nanoparticles coated with chitosan, a natural polysaccharide that can specifically target CSCs. Once in the acidic environment of the tumor, the nanoparticles degraded and released the drug. Tests on tiny, tissue-like clumps of both normal and cancer stem cells in vitro and on human breast tumors grown in mice showed the therapy successfully killed CSCs and destroyed tumors. The mice showed no obvious side effects.

Source: http://www.acs.org

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.