Posted in | News | Nanomaterials

Flow Synthesis of Novel Nanomaterials

Uniqsis reports how the Institute of Physics at the University of Tartu (Estonia) has selected a FlowSyn™ continuous flow reactor with Flow-UV™ detector to assist them in development of novel nanomaterials for use in next generation applications.

The material science research group of Dr Aile Tamm evaluated different technological approaches to synthesise nanomaterials before investing in the Uniqsis FlowSyn system.

Dr Aile Tamm said “We have investigated nanoparticles and nanocomposites with advanced magnetoelectric properties. For instance, we have succeeded in manufacturing thin solid film-particle composite layers containing iron oxide, iron-erbium oxide, manganese-iron oxide and lanthanum oxide particles with average particle diameter in the range of 5-50 nm. These novel composites have demonstrated nonlinear and saturative magnetization as well as coercive hysteresis that are needed for development of electronic devices. In addition to those nanomaterials, several other types of nanoparticles are being investigated at our Institute”.

Managing Director of Uniqsis, Paul Pergande commented “We are delighted to welcome Dr Tamm’s renowned research group to the growing community of leading international material science labs using the FlowSyn for synthesising nanoparticles”. He added “The Flow-UV in-line diode array detector can be used to determine when steady state has been achieved and therefore when to start and stop collecting the reaction product. UV-Vis measurements are particularly significant for nanoparticle distribution and provide information about particle size and whether agglomeration is occurring”.

The FlowSyn™ is a compact integrated continuous flow reactor system designed for easy, safe and efficient operation. The FlowSyn™ range includes models for performing single or multiple homogeneous or heterogeneous reactions, either manually or automatically. The range of reactions that can be explored with Uniqsis’ integrated and modular flow chemistry systems grows ever wider and is exemplified by the growing number of applications published both in the academic press and in Uniqsis’ own application notes.

For further information on the FlowSyn™ continuous flow reactor visit www.uniqsis.com or to discuss a trial of the system please contact Uniqsis on +44-845-864-7747 / [email protected].

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.