Posted in | News | Nanomedicine | Nanomaterials

New Nanoparticle-Based Method Could Help Arrest Internal Bleeding Faster

When there is substantial bleeding following a trauma, the first few minutes are very vital. The person needs to receive intravenous medication swiftly to arrest the bleeding. However, delivering the medication at the appropriate rate can prove to be quite difficult.

The outcome of slower infusions is fewer negative reactions, but the medication may not work sufficiently fast, especially in the case of critical trauma.

Four University of Maryland Baltimore County (UMBC) scientists have formulated a unique method of altering the surfaces of nanoparticles within these life-saving treatments to provide infusions that can be delivered more rapidly, but with a minimal possibility of negative reactions.

Infusion reactions can result in numerous symptoms, such as rashes and inflammatory responses. This can include anaphylaxis, a fatal respiratory failure. Up to now, the seriousness of these reactions has restricted the application of nanomedicines and decreased the probability of adverse reactions that could be radical.

The Core of the Issue

In a study published in the journal Nano Letters recently, Erin Lavik, professor of chemical, biochemical, and environmental engineering; Chuck Bieberich, professor of biological sciences; Nuzhat Maisha, Ph.D. ‘21, chemical engineering; and Michael Rubenstein, M.S. ‘14, Ph.D. ‘22, biological sciences, describe their unique method to the research. They concentrated on the core material of the nanoparticles supplied to patients.

We found that using a polyurethane core reduced the markers associated with infusion reactions.

Erin Lavik, Professor of Chemical, Biochemical, and Environmental Engineering, UMBC

Lavik is also the associate dean for research and faculty development in UMBC’s College of Engineering and Information Technology.

At present, 7% of people undergo infusion reactions, the researchers state in their study. “These reactions…limit the treatments available in a substantial portion of patients,” they elucidate.

We, like most of the field, have spent a lot of time trying to modify the surfaces of nanoparticles to modulate the reaction.

Erin Lavik, Professor of Chemical, Biochemical, and Environmental Engineering, UMBC

She expresses that while that method does help to a certain level, going a step further by modifying the core material seems to have a better impact.

The study carried out by Lavik, Bieberich, and their colleagues lays the foundation for future analysis of preclinical models using nanocapsules to arrest internal bleeding. Lavik explains that partnership was a vital element of this study.

Journal Reference:

Maisha, N., et al. (2021) Getting to the Core of It All: Nanocapsules to Mitigate Infusion Reactions Can Promote Hemostasis and Be a Platform for Intravenous Therapies. Nano Letters. doi.org/10.1021/acs.nanolett.1c02746.

Source: https://www.umbc.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.