Posted in | News | Nanoenergy | Nanoanalysis

BiTO Nanomaterials Show Potential in Piezo-Photocatalysts

A technique to enhance the piezo-photocatalytic performance of nanosheets is reported in a study published in the journal Nano Energy.

BiTO Nanomaterials Show Potential in Piezo-Photocatalysts

Study: Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Image Credit: Sooa/Shutterstock.com

Advances in Photocatalytic Technologies

Bi4Ti3O12 (BiTO) is an Aurivillius-type stacked perovskite oxide with ferroelectric characteristics that has piqued the interest among researchers owing to its use in the degradation of organic compounds, carbon emission control, and NOx elimination. Specific techniques, such as doping, noble metal alteration, semiconductor nanostructure building and oxygen vacancy injection, can be utilized to improve the photocatalytic efficiency of BiTO to a reasonable value. However, any further improvement in efficiency is still a challenge. Furthermore, the preparation processes for BiTO nanoparticles are often complicated. It is hoped that an easy and successful technique may be applied to improve the PC efficiency of BiTO.

Recently, the piezo-phototronic phenomenon was applied to improve the photocatalytic efficiency of piezoelectric elements. The piezoelectric potential generated by physical loading may efficiently segregate the free carriers inside the piezoelectric element, considerably improving catalytic efficacy.

Limitations of Previous Studies

Some traditional ferroelectric perovskite minerals, including BiFeO3, BaTiO3, and PbZrxTi1-xO3, as well as non-ferroelectric elements, including ZnO and MoS2, have already been intensively researched for piezo-photocatalysis. Unfortunately, research into the piezo-photocatalysis of BiTO is still in its early stages.

Despite significant advances in prior studies on BiTO, the piezo-photocatalytic efficiency of BiTO is insufficient. It can be demonstrated that the PC efficiency of BiTO nanoparticles generated using various synthesis techniques varies greatly. Even though hydrothermal BiTO has a high specific surface area, the lesser synthesis temperature, which is lower than 200°C most of the time, may result in inadequate crystallinity of BiTO, which compromises the piezoelectric effect.

The solid-state reaction method enables the elevated synthesis of BiTO. However, the bigger grain size and lower surface area restrict catalytic effectiveness. The nano-threads produced by electro-spinning have a non-compact architecture that can be seriously harmed by extended vibrations. The MS approach produces a saline solution, which partially dissolves the reactants and so facilitates efficient ion transportation and chemical interactions between the reactants. It offers many benefits, including dependability, scalability, universal applicability, and easy aggregation of nanostructures with clean surfaces, among others.

Important Findings of the Study

In this study, the team reported that the single-step MS approach can be used to create well-defined, monodisperse, and substantially crystalline Bi4Ti3O12 nanostructures. The experiments performed by the team showed MS-BiTO nanostructures had higher piezo-photocatalytic performance than Bi4Ti3O12 nanostructures produced by solid-state reaction technique and hydrothermal process owing to a favorable combination of geometry, crystalline nature, specific surface area and size.

 The study showed that MS-BiTO nanostructures photo-catalytically degrade RhB at a rate that is 3.4 times faster than SSR-BiTO and two times faster than HY-BTiO. The piezo-photocatalytic performance achieves k values which are 5.6 times the piezo-catalytic k value and 2.1 times the PC k value, when light and ultrasound are coactivated.

The team argued that the significantly increased piezo-photocatalytic performance is due to the efficient segregation of carriers induced by the breakdown of the screening effect on ferroelectric polarization charges. Additionally, it was deduced that the MS-BiTO nanostructures had a relatively high piezo-photocatalytic performance rate of degradation for MO and TC. The team finally concluded that the MS-BiTO nanostructures manufactured using the MS approach have a great potential for piezo-photocatalysis

A Way Forward

For the very first time, the piezo-photocatalytic performance efficiency of MS-produced BiTO nanostructures was thoroughly examined. The efficient segregation of carriers generated by the lamellar architecture and significant ferroelectric polarization results in an elevated photocatalytic reaction rate for the deterioration of rhodamine B (RhB) under light irradiation. Additionally, the PPT phenomenon was used to considerably boost the PC performance of BiTO nanoparticles.

The depletion efficacy of RhB solution reaches 95 percent in less than half an hour when sunlight and ultrasound are co-excited, resulting in a high response rate. The rate is much higher than the rate of piezo-photocatalysis of BiTO nanoparticles generated using solid-state reaction or hydrothermal technique. The research is projected to initialize the development of a novel technique for synthesizing additional effective piezo-photocatalysts..

Reference

Xie, Z., Tang, X., Shi, J., Wang, Y., Yuan, G., & Liu, J. (2022). Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Nano Energy. Available at: https://doi.org/10.1016/j.nanoen.2022.107247

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Shaheer Rehan

Written by

Shaheer Rehan

Shaheer is a graduate of Aerospace Engineering from the Institute of Space Technology, Islamabad. He has carried out research on a wide range of subjects including Aerospace Instruments and Sensors, Computational Dynamics, Aerospace Structures and Materials, Optimization Techniques, Robotics, and Clean Energy. He has been working as a freelance consultant in Aerospace Engineering for the past year. Technical Writing has always been a strong suit of Shaheer's. He has excelled at whatever he has attempted, from winning accolades on the international stage in match competitions to winning local writing competitions. Shaheer loves cars. From following Formula 1 and reading up on automotive journalism to racing in go-karts himself, his life revolves around cars. He is passionate about his sports and makes sure to always spare time for them. Squash, football, cricket, tennis, and racing are the hobbies he loves to spend his time in.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Rehan, Shaheer. (2022, April 08). BiTO Nanomaterials Show Potential in Piezo-Photocatalysts. AZoNano. Retrieved on April 28, 2024 from https://www.azonano.com/news.aspx?newsID=38950.

  • MLA

    Rehan, Shaheer. "BiTO Nanomaterials Show Potential in Piezo-Photocatalysts". AZoNano. 28 April 2024. <https://www.azonano.com/news.aspx?newsID=38950>.

  • Chicago

    Rehan, Shaheer. "BiTO Nanomaterials Show Potential in Piezo-Photocatalysts". AZoNano. https://www.azonano.com/news.aspx?newsID=38950. (accessed April 28, 2024).

  • Harvard

    Rehan, Shaheer. 2022. BiTO Nanomaterials Show Potential in Piezo-Photocatalysts. AZoNano, viewed 28 April 2024, https://www.azonano.com/news.aspx?newsID=38950.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.