HELIOS Project Develops Processes to Accelerate Silicon Photonics Adoption

CEA-Leti, coordinator of the European HELIOS project to accelerate commercialization of silicon photonics, said today project partners demonstrated a laser and a 10Gb/s silicon modulator using a process that is compatible with complementary metal-oxide semiconductor (CMOS) processing.

Silicon photonics is an emerging technology for overcoming electrical connections’ limits in processing increasingly data-rich content and reducing the cost of photonic systems by integrating optical and electronic functions on the same chip. The technology may enable low-cost solutions for a range of applications such as optical communications, chip-to-chip and rack-to-rack connections, data-center cables, optical signal processing, optical sensing, and biological applications.

The project, in its second year, is developing building blocks and processes to accelerate the adoption of silicon photonics. The laser was fabricated by first bonding a III-V material (indium phosphide) on top of a CMOS wafer and then processing it using the same equipment as in microelectronics production.

The consortium also demonstrated a 10Gb/s silicon modulator with an extinction ratio of 7dB. The 40Gb/s version has already been designed by the consortium and is under fabrication. First characterization results are expected next year.

“The capability of manufacturing optical components within the CMOS-processing infrastructure is key to realizing the potential of silicon photonics,” said Laurent Fulbert, photonics programs manager at Leti and coordinator of HELIOS. “The HELIOS partners are focused on bringing this technology to foundries and component manufacturers for high-volume applications.”

In addition to the laser and silicon modulator, building blocks under development by the HELIOS partners include a light modulator, passive waveguides and photodetectors.

Other recent results of the project include:

  • Demonstration of high responsivity (0.8-1A/W), low dark current and high BW photodiodes (up to 130 GHz)
  • Efficient passive waveguides (Mux/Demux, polarization diversity circuit, fiber coupling, rib/strip transition)
  • Establishment of a photonics design flow
  • Investigation of novel concepts for light emission and modulation

Most of the results of the second year have been presented at the IEEE Group Four Photonics Conference in Beijing.

Source: http://www.leti.fr/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.