Posted in | News | Nanomaterials

Water-Repelling Nanoparticles Help Recover Valuable Minerals from Waste Rock

Researchers report discovery of a completely new technology for more efficiently separating gold, silver, copper, and other valuable materials from rock and ore.

Their report on the process, which uses nanoparticles to latch onto those materials and attach them to air bubbles in a flotation machine, appears in the ACS journal Langmuir.

Robert Pelton and colleagues explain that companies use a technique termed froth flotation to process about 450 million tons of minerals each year. The process involves crushing the minerals into small particles, and then floating the particles in water to separate the commercially valuable particles from the waste rock. The water contains “collector” substances that can attach to the valuable particles, causing them to repel water and rise to the bubbling top of the water where they can be easily skimmed off.

The researchers demonstrated an entirely new type of collector technology, consisting of water-repelling nanoparticles. In laboratory experiments using glass beads to simulate actual mineral particles, they showed that the nanoparticles attached so firmly to the beads that flotation produced a recover rate of almost 100 per cent.

The authors acknowledge funding from the Centre for Materials and Manufacturing and VALE Base Metals.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.