Site Sponsors
  • Oxford Instruments Nanoanalysis - X-Max Large Area Analytical EDS SDD
  • Park Systems - Manufacturer of a complete range of AFM solutions
  • Strem Chemicals - Nanomaterials for R&D

Scientists Use Diamond-Based Nanoscale Materials to Improve Electronics’ Efficiency

Published on March 15, 2012 at 5:50 AM

By Cameron Chai

The Argonne National Laboratory at the U.S. Department of Energy has conducted two new studies, which revealed a novel method to investigate the properties of nanocrystalline-diamond thin films. This latest discovery can pave the way to enhance the performance of specific types of integrated circuits, and this enhancement can be achieved by minimizing the "thermal budget" of the integrated circuits.

Anirudha Sumant, Argonne nanoscientist, informed that for a number of years engineers have strived to develop advanced and efficient electronic devices by minimizing their components’ size. While doing so, scientists have reached a "thermal bottleneck", wherein the surplus heat produced in the electronic device impacts its performance. The only way to overcome this problem is to remove this surplus heat from the electronics.

Diamond thin films have unique thermal properties, which made researchers to propose that this material can be used as a heat sink that can be combined with different semiconducting materials. However, diamond films require high deposition temperatures that can exceed 800°C, thus blocking the viability of this technique.

Sumant informed that diamond films need to be produced at the lowest temperature. When these films are produced at 400°C, it is possible to combine this material with different types of semiconductor materials.

Sumant and other nanoscientists applied a novel method, which modifies the deposition procedure of the diamond films. Through this technique, they were successful in bringing down the temperature to 400°C and also adjusted the diamond films’ thermal properties by controlling their grain size. This allowed the integration of the diamond with two other key materials like gallium nitride and graphene.

Sumant further added that when compared to silicon oxide or silicon, diamond has better heat conductivity properties. Silicon is typically used for developing graphene devices. Improved heat removal will allow diamond-based graphene devices to maintain higher current densities.

In the second study, Sumant applied the same technology to integrate gallium nitride with diamond thin films. The former material is used in high-power LED. After depositing a diamond film of 300 nm thickness on a gallium nitride substrate, the scientists observed a remarkable improvement in the thermal performance.

The results of the studies were published in Advanced Functional Materials and Nano Letters.

Source: http://www.anl.gov/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit