Researchers Create Light-Sensitive Film Using Semiconductor Nanorods and Carbon Nanotubes

The loss of eyesight, often caused by retinal degeneration, is a life-altering health issue for many people, especially as they age. But a new development toward a prosthetic retina could help counter conditions that result from problems with this crucial part of the eye. Scientists published their research on a new device, which they tested on tissue from laboratory animals, in the ACS journal Nano Letters.

This novel, flexible film that can react to light is a promising step toward an artificial retina. (Credit:American Chemical Society)

Yael Hanein and colleagues point out that a growing range of medical devices has become available to treat conditions, including visual impairment, that involve sending sensory signals to the brain. Patients with one type of eye disorder called age-related macular degeneration (AMD), for example, could potentially benefit from such a device, they say. AMD usually affects people age 60 or older who have damage to a specific part of the retina, limiting their vision. Scientists are trying different approaches to develop an implant that can "see" light and send visual signals to a person's brain, countering the effects of AMD and related vision disorders. But many attempts so far use metallic parts, cumbersome wiring or have low resolution. The researchers, an interdisciplinary team from Tel Aviv University, the Hebrew University of Jerusalem Centers for Nanoscience and Nanotechnology and Newcastle University, wanted to make a more compact device.

The researchers combined semiconductor nanorods and carbon nanotubes to create a wireless, light-sensitive, flexible film that could potentially act in the place of a damaged retina. When they tested it with a chick retina that normally doesn't respond to light, they found that the film absorbed light and, in response, sparked neuronal activity. In comparison with other technologies, the researchers conclude theirs is more durable, flexible and efficient, as well as better able to stimulate neurons.

The authors acknowledge funding from the Israel Ministry of Science and Technology, the European Research Council and the Biotechnology and Biological Sciences Research Council.

Source: http://www.acs.org/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    American Chemical Society. (2019, February 11). Researchers Create Light-Sensitive Film Using Semiconductor Nanorods and Carbon Nanotubes. AZoNano. Retrieved on April 28, 2024 from https://www.azonano.com/news.aspx?newsID=31499.

  • MLA

    American Chemical Society. "Researchers Create Light-Sensitive Film Using Semiconductor Nanorods and Carbon Nanotubes". AZoNano. 28 April 2024. <https://www.azonano.com/news.aspx?newsID=31499>.

  • Chicago

    American Chemical Society. "Researchers Create Light-Sensitive Film Using Semiconductor Nanorods and Carbon Nanotubes". AZoNano. https://www.azonano.com/news.aspx?newsID=31499. (accessed April 28, 2024).

  • Harvard

    American Chemical Society. 2019. Researchers Create Light-Sensitive Film Using Semiconductor Nanorods and Carbon Nanotubes. AZoNano, viewed 28 April 2024, https://www.azonano.com/news.aspx?newsID=31499.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.