Posted in | News | Nanolithography

Nanoscale Process with Sizable Potential in Areas from Nanotechnology to Information Storage

People said it couldn't be done, but researchers from the University of Pittsburgh and the U.S. Department of Energy National Energy Technology Laboratory (NETL) in Pittsburgh demonstrated a molecular chain reaction on a metal surface, a nanoscale process with sizable potential in areas from nanotechnology to developing information storage technology. The researchers report in the Dec. 12 edition of Science that a single electron caused a self-perpetuating chain reaction that rearranged the bonds in 10 consecutive molecules positioned on a gold surface. As each molecule's original bond was broken by the reaction, the molecule rearranged itself to form a new molecule.

Study coauthor Kenneth Jordan, a Distinguished Professor of Chemistry in Pitt's School of Arts and Sciences and codirector of the University's Center for Simulation and Modeling, said that the ability to initiate molecular chain reactions and self-assembly has potential applications in information storage and in nanolithography, a process used in producing microchips and circuit boards.

Because the demonstrated reaction involved several molecules on a surface, it reframes researchers' understanding of surface-based chain reactions. "The conventional wisdom held that a surface reaction would fizzle soon after the electron was introduced," Jordan said. "Our work, however, shows that reactions on metal surfaces can be sustained over long distances."

Jordan and his colleagues worked with dimethyldisulfide molecules—two CH(3) methyl groups bonded by two adjoining sulfur atoms. The added electron split the bond between the sulfur atoms of one molecule, creating a highly reactive free radical that attacked the sulfur-sulfur bond of the neighboring molecule. The radical split the bond, resulting in a new molecule and a new radical that proceeded to the sulfur-sulfur bond of the next molecule. The process repeated itself through a series of molecules.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.