Piezo Force Module from Asylum Research allows Nanoscale Imaging using Piezoresponse Force Microscopy

Electromechanical coupling is one of the fundamental natural mechanisms underlying the functionality of many inorganic and macromolecular materials and is ubiquitous in biological systems. The emergence of ferroelectric and multiferroic non-volatile memories and data storage devices have stimulated the studies of electromechanically active materials at the nanoscale. In the last decade, piezoresponse force microscopy (PFM) has emerged as the preeminent tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric materials. In response to the growing applications of electromechanical imaging and spectroscopy, Asylum Research has developed the new Piezo Force Module which enables very high sensitivity,  high bias, and crosstalk-free measurements of piezoelectrics, ferroelectrics, multiferroics, and biological systems. It is exclusively available for the MFP-3D™ Atomic Force Microscope.

“Electromechanics and PFM is a growing area of research with studies ranging from data storage devices to MEMS to electromotor proteins and electrophysiology. Our Piezo Force Module uses a special high voltage accessory and advanced imaging modes to measure piezoresponse, even for the weakest piezoelectric materials,” said Dr. Roger Proksch, President and co-founder of Asylum Research.  “We are extremely excited about the potential for advanced measurements in many different disciplines.”

The Piezo Force Module is an MFP-3D accessory that enables high voltage PFM measurements and advanced imaging modes for characterizing the sample material. With the Piezo Force Module, a bias is applied to the AFM tip using proprietary electronics, a high voltage cantilever, and sample holder. The vertical and lateral response amplitude measures the local electromechanical activity of the surface, and the phase of the response yields information on the polarization direction. High probing voltages, up to +220 volts, can characterize even very weak piezo materials.

Exclusive patent-pending imaging modes, dual frequency resonance tracking and band excitation, effectively use resonance enhancement in PFM and provide new information on local response and energy dissipation which cannot be obtained by standard AFM scanning modes. These techniques allow independent measurement of amplitude, resonant frequency, and Q-factor of the cantilever and overcome limitations of traditional sinusoidal cantilever excitation. The large frequency range (1kHz - 2MHz) of MFP-3D allows imaging both at the static condition, and effective use of several cantilever resonances and use of the inertial stiffening of the cantilever.

Polarization dynamics can also be studied with the built-in spectroscopy modes that include single-point hysteresis loop measurements and switching spectroscopy mapping. These modes provide local measure of such parameters as coercive and nucleation biases, imprint, remanent response, and work of switching (area within the hysteresis loop), for correlation with local microstructure. Combined with the high-voltage module, these allow local polarization switching to be probed even in high-coercivity materials such as electro-optical single crystals.

Pioneering research on PFM is currently being conducted at Oak Ridge National Laboratory at the Materials Science and Technology Division and Center for Nanophase Materials Sciences, in collaboration with Asylum Research (see Asylum Research press release dated March 28, 2007). Many of their latest results will be presented at the MRS Fall 2007 Meeting in Boston, MA.

“The recent work that we have done in collaboration with Asylum is already producing ground-breaking results,” said Dr. Kalinin, Staff Scientist at ORNL. “The plethora of new and exciting electromechanical phenomena emerging on the nanoscale – from electric field induced phase transitions in ferroelectrics to electronic flexoelectricity and molecular electromotors – has been belied by the lack of capability to study them quantitatively and reproducibly. PFM is the technique that enables these studies. Eventually, the development of nanotechnology will require the capability not only to “think”, but to “act” on the nanoscale. PFM will pave the way for the understanding of electromechanical coupling mechanisms on the nanometer scale and development of the molecular electromechanical systems.”

The Piezo Force Module will be introduced at the MRS Fall 2007 meeting.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Asylum Research - An Oxford Instruments Company. (2019, February 15). Piezo Force Module from Asylum Research allows Nanoscale Imaging using Piezoresponse Force Microscopy. AZoNano. Retrieved on April 26, 2024 from https://www.azonano.com/news.aspx?newsID=5428.

  • MLA

    Asylum Research - An Oxford Instruments Company. "Piezo Force Module from Asylum Research allows Nanoscale Imaging using Piezoresponse Force Microscopy". AZoNano. 26 April 2024. <https://www.azonano.com/news.aspx?newsID=5428>.

  • Chicago

    Asylum Research - An Oxford Instruments Company. "Piezo Force Module from Asylum Research allows Nanoscale Imaging using Piezoresponse Force Microscopy". AZoNano. https://www.azonano.com/news.aspx?newsID=5428. (accessed April 26, 2024).

  • Harvard

    Asylum Research - An Oxford Instruments Company. 2019. Piezo Force Module from Asylum Research allows Nanoscale Imaging using Piezoresponse Force Microscopy. AZoNano, viewed 26 April 2024, https://www.azonano.com/news.aspx?newsID=5428.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.