Dec 23 2009
Scientists from A*STAR in Singapore and the USA have developed a fast bioluminescence imaging technique that may greatly assist in the search for drugs that target mobile-or metastatic-cancer cells.
Chemotherapy treatments for this type of cancer using 'anti-migratory' drugs are important because some of the most mobile cells that cause metastasis can resist conventional cancer drugs. This is a problem because patients tend to be at greater risk of developing metastases over the extended survival periods associated with modern cancer therapies. Using zebrafish as a model organism, researchers could spot as few as eight cells undergoing metastasis from glioblastoma multiforme (GBM)-the most common and aggressive type of brain tumor.
The team, including Beng-Ti Ang from A*STAR's Singapore Institute for Clinical Sciences and co-workers at the University of Singapore and the Methodist Hospital, Cornell University, USA, used a method called gene transfection to develop GBM cells that express a gene from fireflies, causing them to emit light in a process known as bioluminescence. They assessed the 'invasiveness' of the cells by measuring how quickly they moved through a three-dimensional matrix, and found that the most invasive cells express a gene that makes them more mobile. The same gene has also been correlated previously with reduced patient survival.
Click here to read the full press release.