Posted in | Nanoanalysis | 2D Materials

Imec Shows Excellent Performance in Ultra-Scaled FETs with 2D-Material Channel

At this year’s IEEE International Electron Devices Meeting (Dec 7-11 2019), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, reports an in-depth study of scaled transistors with MoS2 and demonstrates best device performance to date for such materials.

Benchmark study: imec’s devices with 4nm, 8nm, 12nm HfO2 and 50nm SiO2 have excellent combination of gmmax and SSmin compared to literature.

MoS2 is a 2D material, meaning that it can be grown in stable form with nearly atomic thickness and atomic precision. Imec synthesized the material down to monolayer (0.6nm thickness) and fabricated devices with scaled contact and channel length, as small as 13nm and 30nm respectively. These very scaled dimensions, combined with scaled gate oxide thickness and high K dielectric, have enabled the demonstration of some of the best device performances so far. Most importantly, these transistors enable a comprehensive study of fundamental device properties and calibration of TCAD models. The calibrated TCAD model is used to propose a realistic path for performance improvement. The results presented here confirm the potential of 2D-materials for extreme transistor scaling – benefiting both high-performance logic and memory applications.

Theoretical studies recommend 2D materials as the perfect channel material for extreme transistor scaling as only little short channel effects are expected compared to the current Si-based devices. Hints of this potential have already been published with one-of-a-kind transistors built on natural flakes of 2D materials.

For the first time, imec has tested these theoretical findings through a comprehensive set of 2D-materials-based transistor data. The devices with the smallest footprint have a channel length of 30nm and <50nm contact pitch. ON current as high as 250µA/µm has been demonstrated with 50nm SiO2 gate dielectric. On current of ~ 100 µA/µm and an excellent SSmin of 80mV/dec (for VD =50mV) have been demonstrated with 4nm HfO2 in a backgated configuration. The device performance is not impacted by contact length scaling, confirming that carriers are injected from the edge of the contact metal directly into the channel, in line with TCAD simulations. The work confirms that TCAD models capture large parts of device physics and guide experimental validation and mapping the application space. Part of the paper that is presented at IEDM, is dedicated to setting the path for device optimization for reaching Si-like performance targets.

TEM pictures showing (a) 3 monolayers MoS2 channel, with contact length 13nm and  channel length 29nm Transfer characteristics have improved sub-threshold swing (SS) with  thinner HfO2.

Although still an order of magnitude away from Si transistors, we have brought our MOSFET devices into a realm where they show promising performance for future logic and memory applications”, says Iuliana Radu, director of Exploratory and Quantum Computing imec. “To bridge this order of magnitude, we have identified a path of systematic improvements such as a further reduction of the gate oxide thickness, the implementation of a double-gated architecture, and further reduction of channel and interface defects. We are transferring this insight to our 300mm-wafer platform for transistors with 2D materials, which was announced at last year’s IEDM.

“As a world-leading research and innovation hub, it is imec’s role to push device scaling towards the ultimate limit. We are tackling this challenge by investigating different scaling options, providing optimal projections, and guiding the industry to adopt the proposed solutions, stated Luc Van den hove, imec CEO. “Our partners expect us to lead the way and to support them in realizing their roadmaps by demonstrating the potential of innovative concepts and novel materials. This is why I am so thrilled we have demonstrated excellent performance in ultra-scaled devices with 2D materials, and a credible path to further improvements aiming at mass production in industrial 300mm fabs.”

Transfer characteristics have improved sub-threshold swing (SS) with thinner HfO2.

Source: https://www.imec-int.com/en/home

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    IMEC. (2019, December 10). Imec Shows Excellent Performance in Ultra-Scaled FETs with 2D-Material Channel. AZoNano. Retrieved on July 11, 2020 from https://www.azonano.com/news.aspx?newsID=37080.

  • MLA

    IMEC. "Imec Shows Excellent Performance in Ultra-Scaled FETs with 2D-Material Channel". AZoNano. 11 July 2020. <https://www.azonano.com/news.aspx?newsID=37080>.

  • Chicago

    IMEC. "Imec Shows Excellent Performance in Ultra-Scaled FETs with 2D-Material Channel". AZoNano. https://www.azonano.com/news.aspx?newsID=37080. (accessed July 11, 2020).

  • Harvard

    IMEC. 2019. Imec Shows Excellent Performance in Ultra-Scaled FETs with 2D-Material Channel. AZoNano, viewed 11 July 2020, https://www.azonano.com/news.aspx?newsID=37080.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit