Malvern Instruments Ltd logo.

Malvern NanoSight LM10 with Nanoparticle Tracking Analysis (NTA) Software Suite

Malvern NanoSight LM10 with Nanoparticle Tracking Analysis (NTA) Software Suite

Based on traditional optical microscopes, the NanoSight LM10 employs a laser light source to light up nanoscale particles in a 0.3ml sample introduced to the viewing unit through a disposable syringe. In the presence of a perfect black background, particles appear as point-scatterers moving under Brownian motion.

The NanoSight LM10 is perfect for use in research laboratories. Agglomerates, contaminants, and polydisperse and multimodal systems can be quickly identified and quantified. The instrument has a high-specification sCMOS camera, which enhances the sensitivity of the LM10 by a factor of x100. This means the detection limit for a certain particle type has been enhanced by a factor of 2 when compared to the traditional instrument.

Users can automatically track and size nanoparticles using the image analysis Nanoparticle Tracking Analysis (NTA) software suite. Additionally, video clips of images can be obtained and archived for future reference.

Key Features

The main features of the NanoSight LM10 are:

  • Compact and easy to use
  • High specification sCMOS camera
  • Real-time dynamic nano-particle visualization
  • Particle counting and sizing
  • Particle-by-particle analysis
  • Particle size distributions displayed as histograms
  • Data output to spreadsheet
  • Video clip capture

Applications

The applications of the NanoSight LM10 are:

  • Pharmaceutical nanoparticles - liposomes
  • Ceramic and metallic nanoparticles
  • Colloidal suspensions and polymer nanoparticles
  • Carbon nanotubes (multi-walled)
  • Cosmetics and foodstuffs
  • Wear debris in lubricants
  • Chemical mechanical polishing slurries
  • Nanoparticles in fuels and oils (soot, catalyst, wax etc.)
  • Nanotoxicology studies

Customer Testimonial

The Malvern NanoSight NTA system allows us to directly and reliably quantify extracellular vesicle yields from the cell lines under investigation, which is critical to this project.  We are also using the system to study the fusion of extracellular vesicles with synthetic nanoparticles, for the purpose of engineering the properties of the nanoparticles. We use a combination of the light scattering and fluorescence tracking functions of the NanoSight system to determine the proportion of fluorescently labeled nanoparticles that have bound to the extracellular vesicles. Having determined that we can quantify binding, the next step will be to scale up and apply NTA as a QC and process evaluation technique.

Dr Paulaitis, Researcher, Department of Chemical and Biomolecular Engineering, Ohio State University

Other Equipment by this Supplier