Posted in | News | Carbon Nanotubes

Experimental and Theoretical Study of Frictional Forces on Carbon Nanotubes

Spiderman's gecko-like ability to climb walls may someday leap from fiction to reality, courtesy of recent nanoscience research showing the exceptional adhesive properties of carbon nanotubes. Complementary to adhesion and equally intriguing is nanotube friction, highlighted in work such as that appearing in the 13 September advanced online publication of Nature Materials.

In a joint experimental and theoretical study of frictional forces on carbon nanotubes, ICTP researcher Erio Tosatti, along with an international team of physicists, discovered a difference in friction depending on which way the tube was stroked by a very small tip. A motion perpendicular to the nanotube produced much more friction than a parallel motion.

"When our experimental colleagues in Atlanta and Hamburg set out to measure friction forces of nanotubes, they expected to find the same amount of friction from parallel and perpendicular movements. Results showed this was not the case," said Tosatti, a theorist with ICTP's Condensed Matter section (also with SISSA and CNR-Democritos). Simulations performed in Trieste then showed that the increased perpendicular friction is caused by a "hindered rolling" of the nanotube on its substrate. More than that, the amount and the left-right friction asymmetry is predicted to depend on the nanotube “chirality” – the generally unknown twist sense of carbon chains that make up each tube. The friction felt by a stroking nanotip should be able to “read” the underlying tube texture, much as a blind man can read a Braille text.

The research findings could lead to improved nanotube selection for assembly in nanotube-based composite materials and devices. And for those of you aspiring to climb walls like Spiderman, the research might perhaps help in improving the design of nano-adhesives that allow for super-gripping powers.

The title of the article is "Hindered rolling and friction anisotropy in supported carbon nanotubes".

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.