Nanotechnologists To Use DNA Discovery For Medical Treatments - News Item

Researchers have found they can control the size of densely packed DNA structures by changing the salt concentration in solutions containing DNA. The finding could improve the efficiency of gene delivery for medical treatment and disease prevention.

Scientists are seeking to understand the natural mechanism of DNA condensation into nanostructures—in particular, toroids, which look like tightly wound garden hoses. Densely packed DNA is nature’s efficient way of transporting genetic information, done particularly well by sperm cells and viruses.

Researchers want to mimic this process to improve DNA delivery for gene therapy and DNA-based vaccines, but they face many challenges in the laboratory where DNA in solution typically exists in an extended, rather than condensed state. Scientists have been able to cause DNA to condense into toroids by adding positively charged molecules to samples, but they have had difficulty finding the right molecules to achieve consistent, optimal toroid sizes of less than 50 nanometers.

However, scientists at Georgia Institute of Technology have made a significant advance in controlling the size of DNA toroids. In the July 18, 2003 online issue of the journal Proceedings of the National Academy of Sciences (PNAS), they report that reducing salt concentrations below normal laboratory solution levels shrinks both the diameter and thickness of DNA toroids. This finding resulted from a combined investigation of how static DNA loops and solution conditions might be used to control toroid dimensions.

"But even without static loops present, DNA produces smaller toroids if you reduce the salt concentration,” said Nicholas Hud, an associate professor of biochemistry who is leading the study funded by the National Institutes of Health. “We found a systematic relationship between reducing salt and reducing toroid size. It is surprising that such a study was not previously done because salt concentration is such a fundamental parameter in studying molecules in solution, particularly such highly charged molecules as DNA.”

Protocols for preparing DNA for delivery to cells often call for salt conditions that differ from those DNA encounters when injected into body tissues, Hud noted. “If you change the salt conditions during DNA delivery, it will change particle size and have a dramatic effect on the efficiency of gene delivery,” he added. “This could explain why some researchers aren’t getting as good a rate of transfection (the incorporation of DNA into a cell) as they should.”

In the study reported in PNAS, Hud and his Ph.D. students Christine Conwell and Igor Vilfan also describe using the positively charged, inorganic molecule hexammine cobalt (III) to condense a DNA molecule containing a specially designed sequence. The synthetic sequence causes a region of the DNA molecule to bend into two loops of 25 nanometers each in diameter. In other words, these nanoscale loops were “programmed” into the DNA sequence.

Posted 29th July 2003

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.