UCLA Builds Nano-Elevator - New Technology

UCLA supramolecular chemists report in the journal Science an artificial molecular machine that functions like a nanoelevator.

"Such nanoscale robotic devices could find use in slow-release drug delivery systems and in the control of chemical reactions within nanofluidic systems conducted in laboratories on a chip," said Jovica Badjic, postdoctoral researcher in the laboratory of Fraser Stoddart, holder of the Fred Kavli Chair in nanosystems sciences and director of the California NanoSystems Institute at UCLA.

In Badjic's incrementally staged design of the nanoelevator — a rig-like construct with three legs embracing an interlocked deck-like component, can be made to move between two levels, he had to get the matching components to fit together just perfectly.

The challenge is similar to one that nature has already solved in creating the multivalent interactions that exist between cells for the purpose of communicating information throughout the body.

"The first step in the synthesis can be likened to learning how to put a glove on one's hand blindfolded. You will make countless mistakes but eventually you find out by trial and error how to get the match just right. That's how the multivalency gets expressed during my template-directed synthesis," Badjic said.

In order to demonstrate the operation of the elevator, the UCLA chemists entered into collaboration with an Italian team at the University of Bologna: professor Vincenzo Balzani, assistant professor Alberto Credi and graduate student Serena Silvi.

The elevator is about 3.5 nanometers in diameter and 2.5 nanometers in height. Each leg of the rig has two stations — one, a strong one, which relies on hydrogen bonds, and another much weaker one. The strong hydrogen bonds between the rig and the deck can be destroyed by taking a proton away from each leg one at a time with base. The result is a stepwise movement of the deck down to the now preferred stations lower down the rig. By taking steps one at a time, the elevator is more reminiscent of a legged animal than it is of a passenger elevator. The deck can be returned to the top level by the addition of acid. The elevator has been made to go up and down 10 times by the consecutive addition of acid and base, respectively.

Although it has been commented in the article that distance traveled by the deck is just a little less than one nanometer, 1,000 times smaller than the thickness of a human hair, and that the force generated could be as much as 200 picoNewtons, Stoddart urged caution with respect to this claim, based on calculations carried out in Bologna, until it is backed up by experiments, and also by an all-encompassing theory.

Posted 23rd March 2004

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.