The development is based on optical principles and provides precision and allows saving vital time for the patient.
Imagine a low-cost, disposable breath analysis device that a person with cystic fibrosis could use at home along with a smartphone to immediately detect a lung infection, much like the device police use to gauge a driver's blood alcohol level.
The National Physical Laboratory (NPL) would like to congratulate Eric Betzig, Stefan W Hell and William E Moerner for their award of the Nobel Prize in Chemistry 2014. NPL scientists are building upon their pioneering work, which has resulted in 'microscopy becoming nanoscopy'.
A $470,350 award from the National Science Foundation will support research at Indiana University-Purdue University Indianapolis (IUPUI) to gain a better understanding of how proteins form groups or clusters within cells in the living body. Abnormal protein grouping is known to be associated with cancer and with heart arrhythmias, but scant knowledge exists about how proteins group.
All through his childhood, Ramesh Raskar wished fervently for eyes in the back of his head. “I had the notion that the world did not exist if I wasn’t looking at it, so I would constantly turn around to see if it was there behind me.” Although this head-spinning habit faded during his teen years, Raskar never lost the desire to possess the widest possible field of vision.
Princeton University researchers have developed a new method to increase the brightness, efficiency and clarity of LEDs, which are widely used on smartphones and portable electronics as well as becoming increasingly common in lighting.
The Journal of Optics has devoted the front page of its special edition on Mid-infrared and THz Photonics to the work produced by the NUP/UPNA-Public University of Navarre researchers Víctor Pacheco-Peña, Víctor Torres, Miguel Beruete and Miguel Navarro-Cía (former student currently working at Imperial College London), together with Nader Engheta (University of Pennsylvania), one of the world's leading experts in metamaterials. In their research they have proposed various devices capable of redirecting electromagnetic waves with efficiency levels close to 100%.
Case Western Reserve University’s synchrotron facility at Brookhaven National Laboratory is on its way to becoming the No. 1 beamline facility for biology in the world by early 2016, thanks to a jumpstart grant of $4.6 million from the National Institute of Biomedical Imaging and Bioengineering (NIBIB), a component of the National Institutes of Health (NIH).
Being able to track individual biomolecules and observe them at work is every biochemist’s dream. This would enable the scientists to research in detail and better understand the workings of the nanomachines of life, such as ribosomes and DNA polymerases. Researchers at the Max Planck Institute for the Science of Light have taken a big step closer to this goal.
The latest and greatest scientific achievements at the nanoscale were on display at the 2014 Cornell NanoScale Science and Technology Facility (CNF) annual meeting, Sept. 18, which featured a lineup of speakers in materials science, biomedical engineering and more, and a research poster session and vendor show. Attendees also heard a brief update on the facility’s long-term future.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.