Posted in | News | Bionanotechnology

Researchers Detect Genetic Copy Number Variations Using Novel Solution from NanoString

NanoString Technologies, Inc., a privately held life sciences company marketing a complete solution for detecting and counting large sets of target molecules in biological samples, today announced the launch of a novel solution for detecting genetic copy number variations (CNVs) associated with disease susceptibility, drug response and cancer progression.

The nCounter® Copy Number Variation CodeSets enable researchers to interrogate up to 800 regions of the human genome in a single multiplexed reaction with the least hands-on time of any CNV platform. The company launched the product at the 60th Annual Meeting of the American Society of Human Genetics (ASHG), taking place in Washington, D.C. this week.

Researchers previously had no simple, precise, and scalable technology for technically replicating CNV detection or validating CNV correlation with biological processes. The nCounter Copy Number Variation CodeSets, built on the same innovative digital technology underlying NanoString’s gene expression and miRNA assays, enable researchers to perform the functional equivalent of 9,600 qPCR reactions (800 regions across 12 samples) with only 25 minutes of hands-on time.

“We are impressed with the initial data we generated using the nCounter CNV CodeSets,” said Steven McCarroll, Ph.D., a professor in the Department of Genetics at Harvard Medical School, who assisted NanoString in validating the nCounter Copy Number Variation assays. “We expect the system’s simplified workflow and high multiplexing capacity will allow us to rapidly validate results from large-scale CNV studies and provide a significant amount of high-quality, quantitative data. The data show a linear response to underlying copy number, with little if any saturation at higher copy numbers. The technical reproducibility in our preliminary studies has been excellent.”

Unlike PCR or arrays, the nCounter Analysis System does not rely on analog signal output or amplification of target molecules. Instead, the system utilizes a digital quantification technology that offers superior reproducibility and generates highly accurate data with a linear response to increasing copy numbers. These advantages also make it possible for data generated from multiple sites or studies to be combined for further analysis, thus facilitating multisite studies or comparisons of old and new data sets.

“Next-generation DNA sequencing and array-based association studies are identifying large numbers of medically relevant CNVs,” said Brad Gray, President and CEO of NanoString Technologies. “We believe the nCounter CNV CodeSets will become the new gold-standard for subsequently validating these targeted sets of CNVs, and for effectively running larger replication studies when increased statistical power is required.”

NanoString scientist Gary Geiss, Ph.D. will discuss the multiplexed, single-assay validation of whole genome microarray copy number data at the ASHG poster session (#1812/T), on Thursday, November 4 at 6.00 p.m. ET. In addition, Dale Hedges, Ph.D. and Toumy Guettouche, Ph.D., both of the University of Miami, will be presenting a poster evaluating the use of the NanoString technology for detection of copy number variation (#1793/T) . The company will also be demonstrating its nCounter Analysis System and new CNV CodeSets at its exposition booth (#1137).



Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Nanostring Technologies. (2019, February 13). Researchers Detect Genetic Copy Number Variations Using Novel Solution from NanoString. AZoNano. Retrieved on March 01, 2024 from

  • MLA

    Nanostring Technologies. "Researchers Detect Genetic Copy Number Variations Using Novel Solution from NanoString". AZoNano. 01 March 2024. <>.

  • Chicago

    Nanostring Technologies. "Researchers Detect Genetic Copy Number Variations Using Novel Solution from NanoString". AZoNano. (accessed March 01, 2024).

  • Harvard

    Nanostring Technologies. 2019. Researchers Detect Genetic Copy Number Variations Using Novel Solution from NanoString. AZoNano, viewed 01 March 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Azthena logo powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.