Posted in | Nanomaterials | Nanoenergy

New Palladium-Based Nanomaterial Production Process Shows Potential for Affordable Hydrogen Fuel Cells

With the growth of wind and solar energy and the increasing popularity of electric vehicles, many people in the U.S. may have forgotten about the promised "hydrogen economy." But in research labs around the world, progress continues. Now scientists are reporting in the Journal of the American Chemical Society a new process that could help us move faster toward sustainable hydrogen-based energy.

One of the major challenges to developing affordable hydrogen fuel cells has been storage. Hydrogen is explosive and requires costly containers to hold it safely. But recently, scientists have shown that formic acid is a good candidate for storing hydrogen. The common industrial chemical -- also the stuff of ant venom -- is stable and inexpensive. One molecule of the acid is made of five atoms, two of which are hydrogen atoms. But splitting the formic acid to release hydrogen and produce electricity requires a lot of heating and processing. So Qiang Xu and colleagues set out to find a better way.

The researchers developed a simple method for producing a palladium-based nanomaterial that can spur the breakdown of formic acid into hydrogen and carbon dioxide. Its efficiency far exceeded that of any other reported heterogeneous catalysts, they say. They also found that their process only produced carbon dioxide and hydrogen without carbon monoxide contamination, which has been a problem with other methods.

Source: http://www.acs.org

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit