Posted in | News | Nanoanalysis

Positive Results Obtained from TiO2 Nanoparticle Treated Soil

Titanium dioxide (TiO2) nanoparticles (NPs) are the most extensively utilized nanomaterial, and their increased usage raises issues about their potential influence on the soil environment. A recent paper submitted to the journal Chemosphere assessed the possible effects of low-dose TiO2 nanoparticles on the biochemical characteristics of the soil.

Positive Results Obtained from TiO2 Nanoparticle Treated Soil

Study: Interaction of TiO2 nanoparticles with soil: Effect on microbiological and chemical traits. Image Credit: Piyaset/

Impact of Nanoparticles on Rhizosphere

The rhizosphere is a bioactive environment that consists of a thin layer of soil adhering to the root system surfaces in the subsurface's unsaturated zone. The rhizosphere is home to a large number of valuable microbes, and interactions between bacteria and plant surfaces are crucial for the proper operation of nutrient cycles.

The rhizosphere's integrity is critical for plant development, and any external agent that interferes with rhizosphere functioning may affect plant growth. Nanoparticles absorbed from various sources may have a profound influence on the form and function of soil microbial communities.

What are Titanium Dioxide (TiO2) Nanoparticles?

Titanium dioxide nanoparticles are particles having a size smaller than 100 nanometers, finding use in a wide range of advanced applications, including photoconductive construction, photochemical breakdown of contaminants, water filtration, biomedical sensors, and drug delivery systems.

Agricultural nanotechnology applications of TiO2 nanoparticles as a non-nutrient fertilization agent are still in their infancy. Previous research has confirmed that TiO2 nanoparticles have a dual influence on soil microbial communities, i.e., both beneficial and detrimental effects. As a result, the impact of TiO2 nanoparticles on the biochemical properties of soil must be properly explored.

Importance of Soil Microorganisms

Soil microorganisms are critical regulators of soil biochemical processes. By affecting soil moisture condition, total suspended solids, total oxygen consumption, electrical properties, soil enzyme activity, and accessible organic fertilizers, the presence of tailored titanium dioxide nanoparticles in soil may influence bacterial diversity and community functioning.

The influence of TiO2 nanoparticles on soil microbial populations, plant development, and nutrient absorption has been documented previously. A few studies have also shown that the treatment of TiO2 nanoparticles influences the nutrient supply in the soil. However, these studies do not present a complete methodology for assessing the effect of low concentrations of TiO2 nanoparticles treatment.

Effect of Low Concentrations of TiO2 Nanoparticles on Soil Chemistry

In this study, the researchers focused on the impact of low doses (up to 20 mg/L) of TiO2 nanoparticles on the chemical and biological attributes of mungbean cultivated soil. To understand the impact of NP treatment, several biochemical, microbial, and enzymatic variables of the soil were examined at different time intervals.

Additionally, a quantitative reverse transcription chain polymer reaction (RT-PCR) investigation was conducted to determine the proportional changes in the expression of N-transformation-related genes in the soil ammonia oxidizer and nitrogen-fixing bacteria.

Important Findings of the Study

The researchers discovered that applying TiO2 nanoparticles in small doses improved the chemical characteristics and nutrient availability of the soil. Increased nutrient availability due to the application of TiO2 nanoparticles led to an increase in nutrient absorption by the plants. Additionally, treatment with TiO2 nanoparticles at low levels (up to 10.0 mg/L) enhanced soil microbial activity and enzyme concentration.

The quantitative RT-PCR analysis demonstrated that the reverse transcription of ammonia oxidizers was incompatible with the cell viability of ammonia oxidizers. The rise in fold change could be due to the presence of nonculturable and unfavorable bacteria in the soil.

A correlation investigation of several soil components found a positive correlation between protease and urease production. Protease is a digestive enzyme that aids in the breakdown of protein complexes into amino acids.

Future Perspective

The study's results indicate that TiO2 NPs can improve nitrogen recycling in the rhizosphere soil. Additionally, the NPs stimulate ammonia oxidizers in the soil. Thus, treatment of TiO2 NPs at small concentrations may enhance overall soil quality, and their regulated usage as a nano nutrient fertilizer for crop development has significant potential for future applications.


Kaur, H., Kalia, A., Sandhu, J. S., Dheri, G. S., Kaur, G., & Pathania, S. (2022). Interaction of TiO2 nanoparticles with soil: Effect on microbiological and chemical traits. Chemosphere:

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Hussain Ahmed

Written by

Hussain Ahmed

Hussain graduated from Institute of Space Technology, Islamabad with Bachelors in Aerospace Engineering. During his studies, he worked on several research projects related to Aerospace Materials & Structures, Computational Fluid Dynamics, Nano-technology & Robotics. After graduating, he has been working as a freelance Aerospace Engineering consultant. He developed an interest in technical writing during sophomore year of his B.S degree and has wrote several research articles in different publications. During his free time, he enjoys writing poetry, watching movies and playing Football.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ahmed, Hussain. (2022, April 20). Positive Results Obtained from TiO2 Nanoparticle Treated Soil. AZoNano. Retrieved on May 25, 2024 from

  • MLA

    Ahmed, Hussain. "Positive Results Obtained from TiO2 Nanoparticle Treated Soil". AZoNano. 25 May 2024. <>.

  • Chicago

    Ahmed, Hussain. "Positive Results Obtained from TiO2 Nanoparticle Treated Soil". AZoNano. (accessed May 25, 2024).

  • Harvard

    Ahmed, Hussain. 2022. Positive Results Obtained from TiO2 Nanoparticle Treated Soil. AZoNano, viewed 25 May 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.