Findings Demonstrate Superior Efficacy of Nanoparticle-Based MR Diagnostic Technology

T2 Biosystems, Inc., a company developing the first portable medical diagnostic products which combine nanotechnology and miniaturized magnetic resonance (MR) technology, today announced significant research findings that demonstrate the superior efficacy of the Company's nanoparticle-based, magnetic resonance diagnostic technology in a new miniaturized prototype. The findings appear in Nature Medicine in an article entitled "Chip-NMR biosensor for detection and molecular analysis of cells."

The findings published in Nature Medicine show the clinical potential and exquisite sensitivity of T2’s technology as a robust and portable diagnostic device for multiplexed, quantitative and rapid analysis within a miniaturized prototype. In the study, a prototype device developed by the investigators at the Massachusetts General Hospital and Harvard University performed measurements on biological samples, accurately detecting bacteria with high sensitivity, identifying small numbers of cells and analyzing them on a molecular level in real time, while measuring a series of protein biomarkers in parallel. The results showed the prototype distinguished between simulated blood samples representing healthy individuals, those with cancer, and those with diabetes, by looking for eight different biomarker molecules and also demonstrated it is sensitive enough to detect just 10 bacteria in a given sample.

This new research demonstrates the clinical potential of T2’s technology, through new methods of advancing and developing magnetic resonance-based diagnostics, which will ultimately offer improved speed, accuracy and efficiency as well as portability to a broader range of settings including doctor’s offices, homes and hospitals.

“This exciting data shows that this T2 technology-based prototype is currently two to three orders of magnitude more sensitive than the standard NMR scanners used in many laboratories today, and the revolutionary potential this technology can bring to bear on the field of clinical diagnostics,” said Ralph Weissleder, Ph.D., author of the paper, co-founder of T2 Biosystems and Professor, Harvard Medical School. “This novel technology will ultimately enable immediate, accurate diagnostic testing for nearly any health condition, in nearly any setting.”

“This exciting data is a continued validation of the breakthrough potential of T2’s novel technology,” said John McDonough, CEO of T2 Biosystems. “This data further demonstrates the robust capabilities of our portable diagnostics platform and the potential to improve health care by providing accurate and rapid diagnostic results in virtually any healthcare setting.”

T2 Biosystems is developing the next generation of medical diagnostic products through its proprietary technology, which combines nanotechnology and the miniaturization of proven MR technology to develop rapid, accurate and portable diagnostics. T2 Biosystems’ technology has been validated in multiple published journal articles and has shown to accurately analyze viruses, bacteria, proteins, hormones, DNA, small molecules and other diagnostic targets. The Company is developing a pipeline of diagnostic products based on its technology, including devices for hospitals, diagnostic laboratories and medical offices, as well as individual patients.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.