Editorial Feature

Bottom-Up Methods for Making Nanotechnology Products

Image Credits: Inozemtsev Konstantin/shutterstock.com

There are two general ways available to produce nanomaterials, as shown in the following figure. The first way is to start with a bulk material and then break it into smaller pieces using mechanical, chemical or other forms of energy (top-down). An opposite approach is to synthesize the material from atomic or molecular species via chemical reactions, allowing for the precursor particles to grow in size (bottom-up). Both approaches can be done in either gas, liquid, supercritical fluids, solid states, or in a vacuum. Most of the manufacturers are interested in the ability to control: a) particle size b) particle shape c) size distribution d) particle composition e) degree of particle agglomeration.

What Processes are used for Bottom-up Manufacturing?

Methods to produce nanoparticles from atoms are chemical processes based on transformations in solution e.g. sol-gel processing, chemical vapor deposition (CVD), plasma or flame spraying synthesis, laser pyrolysis, atomic or molecular condensation. These chemical processes rely on the availability of appropriate “metal-organic” molecules as precursors. Sol-gel processing differs from other chemical processes because of its relatively low processing temperature. This makes the sol-gel process cost-effective and versatile. In spraying processes, the flow of reactants (gas, liquid in form of aerosols or mixtures of both) is introduced to high-energy flame produced for example by plasma spraying equipment or carbon dioxide laser. The reactants decompose and particles are formed in a flame by homogeneous nucleation and growth. Rapid cooling results in the formation of nanoscale particles.  

These are chemical processes to materials based on transformations in solution such as sol-gel processing, hydro or solvothermal syntheses, Metal-Organic Decomposition (MOD), or in the vapor phase chemical vapor deposition (CVD). Most chemical routes rely on the availability of appropriate “metal-organic” molecules as precursors. Among the various precursors of metal oxides, namely metal b-diketonates, and metal carboxylates, metal alkoxides are the most versatile. They are available for nearly all elements and cost-effective synthesis from cheap feedstock have been developed for some.

How to Control the Construction and Growth of the Nanoparticles

Two general ways are available to control the formation and growth of the nanoparticles. One is called arrested precipitation and depends either on exhaustion of one of the reactants or on the introduction of the chemical that would block the reaction. Another method relies on a physical restriction of the volume available for the growth of the individual nanoparticles by using templates.

Sol-Gel Process

The sol-gel technique is a long-established industrial process for the generation of colloidal nanoparticles from the liquid phase, which has been further developed in the last years for the production of advanced nanomaterials and coatings. Sol-gel-processes are well adapted for oxide nanoparticles and composites nanopowders synthesis. The main advantages of sol-gel techniques for the preparation of materials are low temperature of processing, versatility, and flexible rheology allowing easy shaping and embedding. They offer unique opportunities for access to organic-inorganic materials. The most commonly used precursors of oxides are alkoxides, because of their commercial availability and the high liability of the M-OR bond allowing facile tailoring in situ during processing.

Aerosol-Based Processes

Aerosol-based processes are a common method for the industrial production of nanoparticles. Aerosols can be defined as solid or liquid particles in a gas phase, where the particles can range from molecules up to 100 µm in size. Aerosols were used in industrial manufacturing long before the basic science and engineering of aerosols were understood. For example, carbon black particles used in pigments and reinforced car tires are produced by hydrocarbon combustion; titania pigment for use in paints and plastics is made by the oxidation of titanium tetrachloride; fumed silica and titania are formed from their respective tetrachlorides by flame pyrolysis, and optical fibers are manufactured by a similar process.

Traditionally, spraying is used either to dry wet materials or to deposit coatings. Spraying of the precursor chemicals onto a heated surface or into the hot atmosphere results in precursor pyrolysis and formation of the particles. For example, a room temperature electro-spraying process was developed at Oxford University to produce nanoparticles of compound semiconductors and some metals. In particular, CdS nanoparticles were produced by generating aerosol micro-droplets containing Cd salt in the atmosphere containing hydrogen sulfide.

Chemical Vapor Deposition (CVD)

CVD consists of activating a chemical reaction between the substrate surface and a gaseous precursor. Activation can be achieved either with temperature (Thermal CVD) or with a plasma (PECVD: Plasma Enhanced Chemical Vapor Deposition). The main advantage is the nondirective aspect of this technology. Plasma allows a significant decrease in the process temperature compared to the thermal CVD process. CVD is widely used to produce carbon nanotubes.

Atomic or Molecular Condensation

This method is used mainly for metal-containing nanoparticles. A bulk material is heated in vacuum to produce a stream of vaporized and atomized matter, which is directed to a chamber containing either inert or reactive gas atmosphere. Rapid cooling of the metal atoms because of their collision with the gas molecules results in the condensation and formation of nanoparticles. If a reactive gas like oxygen is used then metal oxide nanoparticles are produced.  

Using Gas-Phase Condensation to Produce Metal Nanopowders

The theory of gas-phase condensation for the production of metal nanopowders is well known, having first been reported in 1930. Gas-phase condensation uses a vacuum chamber that consists of a heating element, the metal to be made into nano-powder, powder collection equipment, and vacuum hardware.

How the Gas-Phase Condensation Process Works

The process utilizes a gas, which is typically inert, at pressures high enough to promote particle formation, but low enough to allow the production of spherical particles. Metal is introduced onto a heated element and is rapidly melted. The metal is quickly taken to temperatures far above the melting point, but less than the boiling point, so that an adequate vapor pressure is achieved. Gas is continuously introduced into the chamber and removed by the pumps, so the gas flow moves the evaporated metal away from the hot element. As the gas cools the metal vapor, nanometer-sized particles form. These particles are liquid since they are still too hot to be solid. The liquid particles collide and coalesce in a controlled environment so that the particles grow to specification, remaining spherical and with smooth surfaces. As the liquid particles are further cooled under control, they become solid and no longer grow. At this point the nanoparticles are very reactive, so they are coated with a material that prevents further interaction with other particles (agglomeration) or with other materials.

Supercritical Fluid Synthesis

Methods using supercritical fluids are also powerful for the synthesis of nanoparticles. For these methods, the properties of a supercritical fluid (fluid forced into a supercritical state by regulating its temperature and its pressure) are used to form nanoparticles by a rapid expansion of a supercritical solution. The aupercritical fluid method is currently developed at the pilot scale in a continuous process.

Spinning to Make Thin Polymer Fibers

An emerging technology for the manufacture of thin polymer fibers is based on the principle of spinning dilute polymer solutions in a high voltage electric field. Electrospinning is a process by which a suspended drop of polymer is charged with thousands of volts. At a characteristic voltage, the droplet forms a Taylor cone, and a fine jet of polymer releases from the surface in response to the tensile forces generated by an interaction of an applied electric field, with the electrical charge carried by the jet. This produces a bundle of polymer fibers. The jet can be directed to a grounded surface and collected as a continuous web of fibers ranging in size from a few µms to less than 100 nm.

Using Templates to Form Nanoparticles

Any material containing regular nano-sized pores or voids can be used as a template to form nanoparticles. Examples of such templates include porous alumina, zeolites, di-block copolymers, dendrimers, proteins, and other molecules. The template does not have to be a 3D object. Artificial templates can be created on a plane surface or a gas-liquid interface by forming self-assembled monolayers.

Self-Assembly of Nanoparticles

Nanoparticles of a wide range of materials - including a variety of organic and biological compounds, but also inorganic oxides, metals, and semiconductors - can be processed using chemical self-assembly techniques. These techniques exploit selective attachment of molecules to specific surfaces, biomolecular recognition and self-ordering principles (e.g. the preferential docking of DNA strands with complementary base pairs) as well as well-developed chemistry for attaching molecules onto clusters and substrates (e.g. thiol (-SH) end groups) and other techniques like reverse micelle, sonochemical, and photochemical synthesis to realize 1-D, 2-D, and 3-D self-assembled nanostructures. The molecular building blocks act as parts of a jigsaw puzzle that join together in a perfect order without an obvious driving force present.

Recent Advances

Most of the above technologies are now well developed and some have even been successfully commercialized. The technologies being researched today include biomimetic materials that can self-organize, self-healing materials and a combination of biological and synthetic materials and processes to build new architectures and systems.

3-D Printing

Although additive manufacturing, more popularly called 3-D printing was developed in the late 1980s, it has taken the world by storm recently. The technology can now be used to print any type of 3-D materials ranging from tissues and organs to foods and clothes. In this method, a 3-D model of the desired structure is first prepared using computer-aided design. A computer program takes the design and converts it into thin layers. This file is then sent to the printer, which prints the 3-D structure.

Almost any type of material can be used for 3-D printing including metals and biological materials. The technology has been used in making foods such as pasta, candy, and chocolates, shoes, clothing, industrial machine parts, orthopedic implants, and ornamental objects.

Nanofabrication Using Biological Templates

Template-assisted nanofabrication has been in use for some years now. However, most of the templates were made from metals, inorganic oxides, and polymers. Recently, the use of biomolecules as templates for nanofabrication has emerged. For example, viruses have been self-assembled in a layer-by-layer manner and have been used as templates for the organization of nanomaterials into 3-D films. In addition, DNA has been used extensively for bottom-up nanofabrication because of the ability to manipulate its chemistry and 3-D structure. Nanomaterials can be directly fabricated on the DNA molecule itself or DNA can be used as a template for the assembly of nanomaterials.

DNA Origami

One of the newest developments has been in folding and shaping DNA molecules into 3-D structures, similar to the Japanese art of paper folding, origami. Here, a long DNA molecule is folded and “stitched” into desired shapes using short synthetic DNA sequences as crosslinks. From simple structures such as cubes and tetrahedrons, complicated organizations into a rabbit or a nanosized flask have been shown. In addition, these structures have been used as molds and templates for nanofabrication of synthetic materials and biomolecules.  

Molecular Nanotechnology Offers Visions for the Future

Long-term and visionary nanotechnological conceptions, however, go far beyond these first approaches. This applies in particular to the development of biomimetic materials with the ability of self-organization, self-healing, and self-replication by means of molecular nanotechnology. One objective here is the combination of synthetic and biological materials, architectures and systems, respectively, the imitation of biological processes for technological applications. There have been significant advances in these areas in the last decade. Some implants created using 3D printing have already been successfully tested in animals and humans. Tiny robots that can deliver drugs in the body and transport tiny cargo where no hands can reach have been demonstrated. With the rapid strides in the area, the day does not seem far off when several such technologies will be commercially available.

Sources and Further Reading

This article was updated on 16th Novemeber, 2018.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.