Smart Glass Nanocoating Selectively Filters Heat and Light

A team at Lawrence Berkeley National Lab have developed a new type of smart window coating which can selectively filter out heat and visible light using a nanostuctured composite of indium tin oxide (ITO) and niobium oxide.

Some smart glass technology, such as electrochromic glass, is already available on the market. This can typically be used to switch the glass between clear and frosted states using an electrical sugnal, or to reduce the amount of light passing through the glass without obscuring the view.

This new development, described by the Berkeley Lab team in a Nature paper, takes smart glass one step further - controlling heat transmission (in the form of near-infrared radiation) as well as visible light.

This is achieved using a composite of two separate radiation-absorbing materials with different properties. The bulk glass material is made from niobium oxide, which darkens when an electrical current is applied to it.

Embedded into this electrochromic glass are nanocrystals of ITO (indium tin oxide), a common transparent conducting ceramic used in touch screens and solar panels. When these nanocrystals are triggered with a voltage spike, they jump into a state which can filter out around 35% of the incoming NIR radiation.

This nanocomposite coating provides a three-stage filter for external light and heat - in it's normal state, the glass will act as normal. With a small voltage, the ITO crystals will absorb some of the heat, without reducing the amount of light passing through. Increasing the voltage will darken the niobium oxide glass, filtering out the light as well.

This could lead to huge efficiency benefits in buildings, decreasing the need for both air conditioning and artificial lighting. Anna Llourdes, a member of the Berkeley team, commented:

“We’re very excited about the combination of unique optical function with the low-cost and environmentally friendly processing technique. That’s what turns this ‘universal smart window’ concept into a promising competitive technology.”

Delia Milliron, Guillermo Garcia, and Anna Llordés created a new electrochromic material that can dynamically control transmission of both visible light and near-infrared light, enabling a new generation of smart windows. (Team member Jaume Gazquez not shown.) Image credit: Roy Kaltschmidt/Berkeley Lab

The researchers also discovered an additional effect, which enhances the performance of the coating even further. The ITO nanocrystals actually alter the structure of the niobium oxide glass slightly, opening up space in the matrix and allowing charge to flow more readily - making the electrical triggers more effective and strengthening the electrochromic effect.

This discovery could have much wider-reaching applications than just in smart glass, as it demonstrates the power of nanocomposites to access properties which aren't available with conventional materials. Delia Milliron, corresponding author on the Nature paper, commented:

“From a materials-design perspective, we’ve shown that you can combine very dissimilar materials to create new properties that are not accessible in a homogeneous single phase material, either amorphous or crystalline, by taking nanocrystals and putting them in glass.

"The most exciting part has been taking this project all the way from synthesizing a new material, to understanding it in great detail, and finally to realizing a completely new functionality that can have a big impact on technology."



Will Soutter

Written by

Will Soutter

Will has a B.Sc. in Chemistry from the University of Durham, and a M.Sc. in Green Chemistry from the University of York. Naturally, Will is our resident Chemistry expert but, a love of science and the internet makes Will the all-rounder of the team. In his spare time Will likes to play the drums, cook and brew cider.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Soutter, Will. (2017, July 31). Smart Glass Nanocoating Selectively Filters Heat and Light. AZoNano. Retrieved on July 22, 2024 from

  • MLA

    Soutter, Will. "Smart Glass Nanocoating Selectively Filters Heat and Light". AZoNano. 22 July 2024. <>.

  • Chicago

    Soutter, Will. "Smart Glass Nanocoating Selectively Filters Heat and Light". AZoNano. (accessed July 22, 2024).

  • Harvard

    Soutter, Will. 2017. Smart Glass Nanocoating Selectively Filters Heat and Light. AZoNano, viewed 22 July 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.