One of the major sources causing pollution on our Earth is cargo shipping. Roughly 55,000 ships are used for cargo transport over the oceans every day.
A tiny knife is considered the secret behind developing the fastest silicon-based flexible transistors in the world.
Our current understanding of how the brain works is very poor. The electrical signals travel around the brain and throughout the body, and the electrical properties of the biological tissues are studied using electrophysiology. For acquiring a large amplitude and a high quality of neuronal signals, intracellular recording is a powerful methodology compared to extracellular recording to measure the voltage or current across the cell membranes.
For the first time, researchers from the University of Georgia (UGA) and Ben-Gurion University in Israel have illustrated the possibility to develop nanoscale electronic components from single DNA molecules. This latest discovery, featured in Nature Chemistry, marks a major improvement in the quest to find a suitable replacement for the silicon chip.
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles. Now scientists show how originally spherical nucleus can transform into cube with high surface-to-volume ratio. These nanocubes are available to be used in practice, and may interest many designers of new materials. The research has recently been reported in ACS Nano.
The world is run by catalysts. They clean up after cars, help make fertilizers, and could be the key to better hydrogen fuel. Now, a team of chemists, led by Xiaohu Xia from Michigan Technological University, has found a better way to make metal catalysts.
In the world of nano-scale technology, where work is conducted at the atomic level, even the smallest changes can have an enormous impact. And a new discovery by a University of Alberta materials engineering researchers has caught the attention of electronics industry leaders looking for more efficient manufacturing processes.
An innovative nano-lithography printing system has been installed at the University of Bath, making it the only institution in the United Kingdom that has this novel nano-scale patterning equipment. This capability enables the university to play a pioneering role in the advancement of next-generation manufacturing methods for nano-engineered semiconductors.
The printing process continuously evolved since the days of Johannes Gutenberg. A new technique has been developed by a team of researchers at NASA Ames and SLAC National Accelerator Laboratory, to print nanomaterials onto three-dimensional objects or flexible surfaces, such as a cloth or paper, using plasma. The breakthrough process has potential to help build devices, such as integrated circuits, flexible memory devices and batteries, wearable chemical and biological sensors, easily and cost-effectively.
Creating smaller components is a key factor in the race to develop compact smartphones and other handheld devices. There is an increasing demand for lighter and thinner microelectronic devices. However, manufacturers often have a limitation in the form of the oddly shaped energy sources, which pose challenges when trying to conform to the smaller space.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.