Posted in | News | Nanomedicine | Nanomaterials

Researchers Develop Innovative Drug Delivery Technique Using Magneto-Electric Nanoparticles

In a study published in today's issue of Nature Communications, researchers from Florida International University's Herbert Wertheim College of Medicine describe a revolutionary technique they have developed that can deliver and fully release the anti-HIV drug AZTTP into the brain.

Madhavan Nair, professor and chair, and Sakhrat Khizroev, professor and vice chair of the HWCOM's Department of Immunology, used magneto-electric nanoparticles (MENs) to cross the blood-brain barrier and send a significantly increased level of AZTTP—up to 97 percent more —to HIV-infected cells.

For years, the blood-brain barrier has stumped scientists and doctors who work with neurological diseases. A natural filter that allows very few substances to pass through to the brain, the blood-brain barrier keeps most medicines from reaching the brain. Currently, more than 99 percent of the antiretroviral therapies used to treat HIV, such as AZTTP, are deposited in the liver, lungs and other organs before they reach the brain.

"This allows a virus, such as AIDS, to lurk unchecked," said Nair, an HIV/immunology researcher.

The patent-pending technique developed by FIU binds the drug to a MEN inserted into a monocyte/macrophage cell, which is then injected into the body and drawn to the brain. Once it has reached the brain, a low energy electrical current triggers a release of the drug, which is then guided to its target with magnetoelectricity. In lab experiments, nearly all of the therapy reached its intended target. It will soon enter the next phase of testing. For visuals please click here.

Potentially, this method of delivery could help other patients who suffer from neurological diseases such as Alzheimer's, Parkinson's, epilepsy, muscular dystrophy, meningitis and chronic pain. It could also be applicable to diseases such as cancer.

"We see this as a multifunctional therapy," said Khizroev, who is an electrical engineer and physicist by training.

Multi-disciplinary efforts that combine principles of those fields with immunology enabled the project to move forward.

"The success of our nanotechnology is derived from the fact that nature likes simplicity," Khizroev said.

Source: http://fiu.edu

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.