Posted in | News | Nanomedicine

Daisy-Shaped Drug Cocktail Holds Promise Against Cancer

Biomedical engineering researchers have developed daisy-shaped, nanoscale structures that are made predominantly of anti-cancer drugs and are capable of introducing a "cocktail" of multiple drugs into cancer cells. The researchers are all part the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill.

Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers. Image credit: Ran Mo.

"We found that this technique was much better than conventional drug-delivery techniques at inhibiting the growth of lung cancer tumors in mice," says Dr. Zhen Gu, senior author of the paper and an assistant professor in the joint biomedical engineering program. "And based on in vitro tests in nine different cell lines, the technique is also promising for use against leukemia, breast, prostate, liver, ovarian and brain cancers."

To make the "nanodaisies," the researchers begin with a solution that contains a polymer called polyethylene glycol (PEG). The PEG forms long strands that have much shorter strands branching off to either side. Researchers directly link the anti-cancer drug camptothecin (CPT) onto the shorter strands and introduce the anti-cancer drug doxorubicin (Dox) into the solution.

PEG is hydrophilic, meaning it likes water. CPT and Dox are hydrophobic, meaning they don't like water. As a result, the CPT and Dox cluster together in the solution, wrapping the PEG around themselves. This results in a daisy-shaped drug cocktail, only 50 nanometers in diameter, which can be injected into a cancer patient.

Once injected, the nanodaisies float through the bloodstream until they are absorbed by cancer cells. In fact, one of the reasons the researchers chose to use PEG is because it has chemical properties that prolong the life of the drugs in the bloodstream.

Once in a cancer cell, the drugs are released. "Both drugs attack the cell's nucleus, but via different mechanisms," says Dr. Wanyi Tai, lead author and a former postdoctoral researcher in Gu's lab.

"Combined, the drugs are more effective than either drug is by itself," Gu says. "We are very optimistic about this technique and are hoping to begin pre-clinical testing in the near future."

The paper, "Folding Graft Copolymer with Pedant Drug Segment for Co-Delivery of Anticancer Drugs," is published online in the journal Biomaterials. Co-authors include Dr. Ran Mo, a current postdoctoral researcher in the program, and Yue Lu and Tianyue Jiang, who are both Ph.D. students in the program. The research was supported by the National Institutes of Health under grant 1UL1TR001111 and funding from NC State and UNC-Chapel Hill.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    North Carolina State University. (2019, February 11). Daisy-Shaped Drug Cocktail Holds Promise Against Cancer. AZoNano. Retrieved on December 03, 2024 from https://www.azonano.com/news.aspx?newsID=30232.

  • MLA

    North Carolina State University. "Daisy-Shaped Drug Cocktail Holds Promise Against Cancer". AZoNano. 03 December 2024. <https://www.azonano.com/news.aspx?newsID=30232>.

  • Chicago

    North Carolina State University. "Daisy-Shaped Drug Cocktail Holds Promise Against Cancer". AZoNano. https://www.azonano.com/news.aspx?newsID=30232. (accessed December 03, 2024).

  • Harvard

    North Carolina State University. 2019. Daisy-Shaped Drug Cocktail Holds Promise Against Cancer. AZoNano, viewed 03 December 2024, https://www.azonano.com/news.aspx?newsID=30232.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.