Spray-Drying Nanocrystal Encapsulation into Polystyrene Microspheres Helps Protect Against Liquid Water

Many Metal-Organic Frameworks are water labile, including the iconic Hong-Kong University of Science and Technology-1 (HKUST-1), which is very promising for many industrial applications.

In an article published in Advanced Materials magazine and signed by RyC researcher Inhar Imaz and ICREA Research Prof Dr Daniel Maspoch, researchers from the ICN2 belonging to the Supramolecular NanoChemistry & Materials Group have reported that spray-drying encapsulation of nanocrystals of HKUST-1 into polystyrene microspheres is a straightforward, rapid and continuous method to protect the compound against liquid water and water vapours. Their method does not require any filtration or purification steps, since the composites are obtained directly in a dried, pure form.

Although encapsulation always implies a compromise between the protection offered by polystyrene and the pore accessibility of the encapsulated porous material, spray-drying has enabled the authors to fine-tune the HKUST-1/PS ratio to achieve optimal trade-off in their HKUST-1@PS composites: they are resistant to liquid or vapour water yet retain most of the excellent gas sorption capacity of HKUST-1. In these composites, the polymer protects the embedded MOF crystals against water molecules, without substantially decreasing their initial sorption capacity, and increases their water resistance in terms of porosity properties.

As in Metal-Organic Framework (MOF) mix matrix membranes, the permeability of the organic polymer in the composite should be one of the key factors to understand and enhance the gas and vapour transport towards the embedded MOF crystals. Here, for example, further experimentation aimed to study the water uptake kinetics is currently underway. Nevertheless, this method should enable molecular fabrication of various functional composites, based on the ever-expanding pool of MOFs and organic polymers, for a wide array of industrial applications such as CO2 capture from flue gas streams, heat pumps, or adsorption chillers.

Source: http://www.icn.cat/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.