Posted in | News | Bionanotechnology

Novel Nanobiotechnology Shows Remarkable Ability to Fight Fungal Infections

They're roughly the same size as a coronavirus particle, and 1000 times smaller than a human hair, yet newly engineered nanoparticles developed by scientists at the University of South Australia, are punching well above their weight when it comes to treating drug-resistant fungal infections.

Created in partnership with Monash University, the new nanobiotechnology (called 'micelles*'), has a remarkable ability to battle one of the most invasive and notoriously resistant fungal infections ­– Candida albicans.

It's a timely finding, especially given the significant rise of dangerous fungal infections in hospitals with countries overrun by COVID-19.

Candida albicans is an opportunistic pathogenic yeast that is extremely dangerous to people with compromised immune systems, particularly those in a hospital setting. Found on many surfaces, Candida albicans is notorious for its resilience to anti-fungal medicines. It is the most prevalent cause of fungal infections worldwide and can cause serious infections that can affect the blood, heart, brain, eyes, bones, and other parts of the body.

Senior investigator, UniSA's Professor Clive Prestidge says the new polymer-based micelles could revolutionise current anti-fungal medicines.

"Managing and treating invasive fungal infections is particularly challenging because so many fungal biofilms are resistant to contemporary antifungal drugs," Prof. Prestidge says.

"Fungal biofilms are surface-loving microbials that thrive on implanted devices such as catheters, prostheses and heart valves, making the presence of these devices a major risk factor for infection.

"In places like India – which has nearly 40,000 new COVID-19 infections every day – hospital resources are severely stretched, leaving healthcare workers are not only battling COVID-19, but also dealing with complacency and fatigue.

"The unfortunate result is that infection control practices have deteriorated, putting patients on mechanical ventilation at greater risk of developing bacterial or fungal infections.

"As fungal biofilms tend to seed recurrent infections, finding ways to break and beat the infection cycle is critical, especially now.

"Our research has identified and developed smart micelles that have the ability to break down single and multi-species biofilms to significantly inhibit the growth of Candida albicans, one of the most virulent fungal species.

"We estimate that the new micelles could improve the efficacy of anti-fungal medicines by 100-fold, potentially saving the lives of millions of people worldwide."

Dr Nicky Thomas, co-investigator, says the new micelles present a breakthrough for treating invasive fungal infections.

"These micelles have a unique ability to solubilize and entrap a range of important antifungal drugs to significantly improve their performance and efficacy".

"This is the first time that polymer-based micelles have been created with intrinsic capabilities to prevent fungal biofilm formation.

"As our results already show that the new micelles will remove up to 70 per cent of infection, this could be a real game changer for treating fungal diseases."

Source: https://www.unisa.edu.au/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.