Posted in | News | Nanomaterials | Nanoanalysis

Engineered Material Could Help Cut Power Plant Heat Emissions

Thermoelectric oxide ceramics have emerged as a promising solution for waste heat recovery and clean energy generation. By harnessing the heat generated from sources like power plants, these ceramics can power thermoelectric generators, reducing harmful emissions and contributing to the goal of net-zero emissions.

Image Credit: Ha-nu-man/

However, the efficiency of polycrystalline oxide ceramics has been a longstanding challenge. A recent study in the journal Renewable and Sustainable Energy Reviews addresses this issue by creating a new oxide ceramic that improves the performance of thermoelectric generators, offering a path toward a more sustainable future.

Thermoelectric (TE) Power Generators for Revolutionizing Waste Heat Recovery

The shift towards renewable energy sources and clean energy generation has become increasingly crucial in recent years due to the pressing need to reduce our carbon footprint and combat climate change. Utilizing thermoelectric power generators for waste heat recovery is a promising solution in this regard.

By converting temperature gradients into electricity, these devices can generate power without producing any additional greenhouse gas emissions, making them a sustainable and environmentally friendly way to generate power.

One of the significant advantages of thermoelectric devices is that they have no moving parts and operate silently, making them low-maintenance and durable.

Industries that produce iron/steel and non-metallic minerals, for instance, generate waste heat at high temperatures, as high as 1273 K, making them ideal candidates for TE applications. Similarly, power generation and thermal power plants have waste heat conversion efficiencies of up to 60% and 24%, respectively, indicating the substantial potential for waste heat recovery.

Oxide Ceramics: Importance and Limitations for TE Applications

Thermoelectric generators (TEGs) are devices that can convert waste heat into electricity, and oxide ceramics are a promising material for this purpose. Oxide ceramics are made up of various metallic elements and are highly resistant to heat and corrosion, making them suitable for high-temperature applications in the air.

They have a hard structure and are commonly used for making products like pottery, porcelain, clay bricks, and cement. However, when it comes to large-scale TEG applications, engineers face difficulties due to the polycrystalline structure of oxide ceramics.

The polycrystalline structure of oxide ceramics, which comprises several connected crystals, forms grain boundaries. These boundaries impede the flow of current and electrons that power thermoelectric generators, making oxide ceramics ineffective in converting energy. As a result, the lack of efficiency of oxide ceramics has become a major obstacle in the development of TE devices that are highly in demand.

What Did the Researchers Do?

In this study, the researchers utilized a cutting-edge approach to manipulate the crystal structure of oxide ceramics on an atomic scale. By carefully controlling the crystal structure of the polycrystalline material, they were able to create a densely packed, textured material that outperformed single-crystal materials that are currently considered the standard.

To improve the performance of the polycrystalline oxide ceramics further, the researchers introduced dopants, which are metal ions, into the material intentionally.

These dopants were used to segregate special types of dopants to the grain boundaries of the material. By doing so, the researchers were able to transform the grain boundaries, which are usually detrimental to the thermoelectric performance of the material, into pathways that conduct electricity.

By utilizing this approach, researchers can improve the performance of oxide ceramics beyond that of single crystals, which is essential for the continued advancement of thermoelectric devices.

Key Findings

Using grain boundary engineering and dopant segregation, this work revealed important nanostructure engineering techniques required to increase the Seebeck coefficient of oxide ceramics. The experimental results confirm that the performance of oxide ceramics can be significantly enhanced by engineering the grain boundaries and utilizing dopants that segregate to these boundaries.

The study also provides insight into the atomic structure origin of dopant segregation and indicates that oversized dopants are the driving force behind this phenomenon, with coulombic interactions playing a negligible role. This new understanding of the dopant segregation mechanism will enable researchers to further optimize the performance of oxide ceramics by selecting appropriate dopants for specific applications.

This study's effectiveness in increasing the performance of oxide ceramics via grain boundary engineering and dopant segregation opens up new avenues for the rational design and practical production of innovative ceramics for potential electrical and power applications.

This work is at the cusp for large-scale, high-temperature waste heat recovery,” said Xueyan Song, a co-author of the study. “It leads toward a new era for oxide ceramics and aligns with the U.S. Department of Energy’s Industrial Heat Shot initiative to develop cost-competitive industrial heat decarbonization technologies with at least 85% lower greenhouse gas emissions by 2035. Our findings could facilitate and accelerate materials design that is magnitudes higher than the current state of the art.”


Romo-De-La-Cruz, C.-O. et al. (2023). Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries. Renewable and Sustainable Energy Reviews. Available at:

SourceWest Virginia University

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Hussain Ahmed

Written by

Hussain Ahmed

Hussain graduated from Institute of Space Technology, Islamabad with Bachelors in Aerospace Engineering. During his studies, he worked on several research projects related to Aerospace Materials & Structures, Computational Fluid Dynamics, Nano-technology & Robotics. After graduating, he has been working as a freelance Aerospace Engineering consultant. He developed an interest in technical writing during sophomore year of his B.S degree and has wrote several research articles in different publications. During his free time, he enjoys writing poetry, watching movies and playing Football.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ahmed, Hussain. (2023, March 28). Engineered Material Could Help Cut Power Plant Heat Emissions. AZoNano. Retrieved on May 25, 2024 from

  • MLA

    Ahmed, Hussain. "Engineered Material Could Help Cut Power Plant Heat Emissions". AZoNano. 25 May 2024. <>.

  • Chicago

    Ahmed, Hussain. "Engineered Material Could Help Cut Power Plant Heat Emissions". AZoNano. (accessed May 25, 2024).

  • Harvard

    Ahmed, Hussain. 2023. Engineered Material Could Help Cut Power Plant Heat Emissions. AZoNano, viewed 25 May 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.