Think of constructing a complex work of architecture such as a castle. Now imagine if when all its individual parts are gathered together, the castle automatically begins to assemble by itself. Stretch that imagination by scaling down the size of this castle to be a size so small that it has to be measured on the same scale as viruses, DNA, and small molecules.
In the struggle against cancer treatment resistance, nanotechnology, math, and biology are becoming strange, yet effective. An innovative approach towards cancer treatment that pits a deadly mixture of drugs together into a sole nanoparticle, has been engineered by the University of Waterloo and Harvard Medical School scientists.
The standard Petri dish comprising of flat electrodes is deemed to be insufficient to study the working of brain cells and also to assess the impact of medication on separate cells. Cells are expected to increase within three-dimensional surroundings as far as realistic studies are concerned.
Nanomedicines demonstrate the capability to enhance drug properties by offering protection from degradation, enabling controlled release and biodistribution and increasing bioavailability.
Cerulean Pharma Inc., a clinical-stage company developing nanoparticle-drug conjugates (NDCs), today announced that the first patient has been dosed in the Phase 2a stage of an ongoing Phase 1/2a clinical trial of CRLX301 in patients with advanced solid tumors.
One of the primary health concerns worldwide are the critical conditions caused by the blockage of blood vessels. The main aim for emergency assistance during the onset of such conditions is to efficiently implement thrombolysis - dissolving the clot quickly. ITMO University researchers in collaboration with Mariinsky Hospital in Saint Petersburg have created a magnetically controlled drug that could condense on a blood clot due to the presence of a magnetic field.
In the last century, a 20-sided solid was morphed into geodesic domes. This solid is likely to play a major role in synthetic biology. The geometry of the icosahedron is inspiring a team of researchers from the University of Washington Institute of Protein Design who are involved in inventing vehicles, molecular tools, and devices for medicine and other fields.
Anaplastic thyroid cancer (ATC) is a highly life threatening form of thyroid cancer with a mortality rate of nearly 100% and an average survival time of three to five months. One promising approach to treat this type of cancer and others is RNA interference (RNAi) nanotechnology. However delivery of RNAi agents to the precise area of the tumor has been a struggle.
Lychnopholide, a substance isolated from a Brazilian plant, and formulated as part of "nanocapsules" cured more than half of a group of mice that had been infected experimentally with Chagas disease parasites.
White blood cells, also including T cells, need to respond when the body fights an invading pathogen. Researchers from Salk Institute have recently imaged the bundling of critical receptors present on the surface of T cells when activated.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.