Recently, researchers from China analyzed and found that carboxylated nanodiamonds (cNDs) could support the adhesion of tumor cells to the underlying substrate, thereby restricting the motility of tumor cells.
Nanozymes, a group of inorganic catalysis-efficient particles, have been proposed as promising antimicrobials against bacteria. They are efficient in killing bacteria, thanks to their production of reactive oxygen species (ROS).
Researchers from Skoltech and their colleagues from Hadassah Medical Center have developed hybrid nanostructured particles that can be magnetically guided to the tumor, tracked by their fluorescence and pushed to release the drug on demand by ultrasound.
New nanoprobes, which were recently developed by Imperial College London (ICL) and tested in zebrafish, could help identify cancer more precisely and may support the diagnosis and treatment in the days to come.
According to a new study, the delivery of NA1, a neuroprotectant, to the brain in nanoparticles decreases stroke severity and enhances survival in a mouse model of stroke.
Kawasaki, Japan: The research group of Deputy Principal Research Scientist Dr. Satoshi Uchida (Associate Professor, Kyoto Prefectural University of Medicine) at the Innovation Center of NanoMedicine (Director General: Prof. Kazunori Kataoka, Location: Kawasaki-Japan, Abbreviation: iCONM) reported that optimized nano-micelles can induce efficient genome editing in the mouse brain.
Heart attack and stroke are the first and second leading causes of death in developed countries, respectively. As the disease often results in sudden death with few special prognostic symptoms, early diagnosis is very important. For this purpose, imaging techniques such as magnetic resonance imaging (MRI) are widely used to identify the narrowing or blockage of blood vessels.
Specific, effective, with a non-harmful and reversible action: the identikit of the ultimate biomaterial appears to match with graphene flakes.
Researchers from Cleveland Clinic's Global Center for Pathogen Research & Human Health have developed a promising new COVID-19 vaccine candidate that utilizes nanotechnology and has shown strong efficacy in preclinical disease models.
The Innovation Center of NanoMedicine (Director General: Prof. Kazunori Kataoka, Location: Kawasaki in Japan, Abbreviation: iCONM) reported in ACS Nano (Impact Factor: 14.588 in 2019) together with the group of Prof. Yu Matsumoto of Otorhinolaryngology and Head and Neck Surgery (Prof. Tatsuya Yamasoba) and the group of Prof. Horacio Cabral of the Department of Bioengineering (Prof. Ryo Miyake) in the University of Tokyo that the efficacy of polymeric nano-micelles with different drug activation profile depends on the expression level of c-Myc, one of the major proto-oncogene, has been developed.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.